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CHAPTER 1

Advanced coronary artery imaging:
optical coherence tomography

Damian Valencia1,2, Juan Linares1,2, Zachary Gilbert3, Ryan Stuart3,

Olusola Adekoya3, Oscar Valencia4, Rosaria Jordan2 and Brian Schwartz1,2
1Department of Cardiovascular Disease, Kettering Health, Kettering, OH, United States
2Wright State University, Dayton, OH, United States
3Department of Internal Medicine, Kettering Health, Kettering, OH, United States
4Department of Biochemistry, Loyola University, Chicago, IL, United States

1.1 Introduction

Optical coherence tomography (OCT) is a low radiation imaging technique that uses
nondestructive low-coherence light, typically near-infrared, to capture submicrometer
resolution images within optically scattering material or biological tissues.

First presented in 1990, in vivo imaging with OCT was not achieved until 1993,
primarily used by ophthalmologists to detail the retina [1]. Endoscopic use was later
employed in 1997, closely followed by its regular application in cardiology in the early
2000s. Most recently, OCT has been employed in clinical practice by interventional
cardiologists to obtain high-resolution images of coronary arteries. OCT has since rev-
olutionized intracoronary imaging, upturning intravascular ultrasound (IVUS), and
producing images up to 10 times higher in resolution [2,3].

At present, well-powered trials have consistently demonstrated no difference between
invasive and noninvasive strategies for the management of stable coronary artery disease.
New technologies aiming at enhancing the understanding of coronary plaques and their
appropriate management are urgently needed. OCT has emerged as a novel tool for imag-
ing complex vessel anatomy, plaque identification, and for planning percutaneous coronary
interventions (PCIs) [4�6]. This chapter will review the mechanisms, technical aspects,
clinical applications, safety, and complications pertaining to OCT.

1.2 Basic principles of light

1.2.1 Backscatter

In context to the principles of OCT, backscatter (or backscattering) refers to the reflection
of light waves through a sample (coronary walls, plaques, thrombus, and stents) and back
toward the OCT probe [7]. Simply put, backscatter can be thought of as the reflectivity
within a penetrable sample.

1
Cardiovascular and Coronary Artery Imaging
DOI: https://doi.org/10.1016/B978-0-12-822706-0.00001-9

r 2022 Elsevier Inc.
All rights reserved.

https://doi.org/10.1016/B978-0-12-822706-0.00001-9


1.2.2 Attenuation

In addition to understanding backscatter, the concept of light attenuation is also critical to
OCT image interpretation. Attenuation is the gradual loss of flux, specifically light inten-
sity through a medium. The intensity of light at a specific depth can be calculated using
Beer’s Law, also known as the Beer�Lambert�Bouguer Law, detailed below (Eq. 1.1).
This is possible through the correlation of light absorbance and sample concentration [8].

A5 ε‘c

Eq. 1.1: Beer�Lambert�Bouguer Law (Beer’s Law). A is the absorbance, ε is the
molar attenuation coefficient, ‘ is the optical path length, and c is the concentration of
the attenuating species.

1.3 Mechanism and technical modalities of OCT

As an optical analog to IVUS, OCT employs monochromatic, low coherence, near-
infrared light (wavelength of 1250�1350 nm) to penetrate biological tissues to a depth of
1�2 mm. The OCT probe then rotates (frequency of 100 revolutions/s), allowing for the
acquisition of 50,000 data points in axial lines per second [9]. A Michelson interferometer
(Fig. 1.1) is used to reflect light using a series of mirrors and through the tissue sample.
OCT can be performed using two separate interferometer techniques, time domain and
frequency domain [10]. Detection is achieved through broadband interference and partial
coherence between each wave within the coherence length. Significant differences between
IVUS and first-generation time-domain OCT (TD-OCT) are detailed in Table 1.1.

1.3.1 Time domain

In TD-OCT, the path length of light to the reference arm is varied to calibrated dis-
tances throughout time. The change to the reference path length allows for partially
coherent light beam detection at differing tissue depths while staying within the
coherence length [11] (Fig. 1.2). This process creates known, detectable, echo delays.
Both the reference and sample signal are then combined in a fiber coupler, followed
by detection by a photodetector.

The interference of the two partially coherent light signals can be expressed in
reference to the light source intensity (I), seen below (Eq. 1.2).

I 5 k1IS 1 k2IS 1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk1ISUk2ISÞ
p

URe½γðτÞ�

Eq. 1.2: Interference of two partially coherent light signals expressed in reference to
light source intensity (I ). k11 k2, 1 represents the interferometer beam splitting ratio,
γ(τ) is the complex degree of coherence, and τ is the time delay.

2 Cardiovascular and Coronary Artery Imaging



Figure 1.1 Michelson interferometer schematic.

Table 1.1 Comparison of IVUS and first-generation time-domain OCT.

Specifications IVUS First-generation OCT

Axial resolution (µm) 100�150 10�20
Lateral resolution (µm) 150�300 25�40
Frame rate (fps) 30 15�20
Pullback speed (mm/s) 0.5�2.0 0.5�2.0
Scan diameter (mm) 8�10 6.8
Tissue penetration (mm) 4�8 1�2
Balloon occlusion Not Necessary Highly recommended

IVUS, Intravascular ultrasound; OCT, optical coherence tomography.
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Coherence gating relies on the principle of interpretable light wave interference,
constructive or destructive, within the coherence length. Coherence is represented as
a Gaussian function, seen below, where the enveloping function is amplitude modu-
lated by an optical carrier [12]. The peak of this Gaussian enclosure represents the
point location of each structure that is imaged. Signal strength (amplitude) is varied
with respect to surface reflectivity (Eq. 1.3).

Figure 1.2 Time-domain OCT schematic. OCT, Optical coherence tomography.

γðrÞ5 exp 2
π∆υτ

2
ffiffiffiffiffiffi

ln2
p

� �2
" #

Uexp ð2 j2πυ0πÞ
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Eq. 1.3: Coherence is represented as a Gaussian function, where the enveloping func-
tion is amplitude modulated by an optical carrier. ∆ν represents the spectral width
(of the light source) in the optical frequency domain and ν(0) is the center optical
frequency of the source.

Translation of one arm within the interferometer results in a Doppler-shifted optical
carrier, as well as depth scanning [13]. The Doppler-shifted optical carrier has a frequency
that can be expressed in terms of frequency, detailed below (Eq. 1.4).

fDopp5
2Uυ0Uυs

c
Eq. 1.4: Doppler-shifted optical carrier frequency expressed in terms of frequency.
ν(0) is the central optical frequency of the source, v(s) is the scanning velocity of the
path length variation, and c is the speed of light.

The axial resolution of OCT is equivalent to the coherence length of the light source.
The lateral resolution can be described as a function of the optics, defined below (Eq. 1.5).

lc 5
2ln2

π
U

λ2
0

∆λ

� 0:44U
λ2
0

∆λ

Eq. 1.5: Lateral resolution as a function of the central wavelength and light source
width. λ(0) is the central wavelength and ∆λ is the spectral width of the light source.

First-generation coronary TD-OCT systems employed both an imaging wire and occlu-
sion balloon, as transient occlusion of blood flow to the tissue sample was required using this
method due to blood refraction artifact [14]. A flushing fluid, typically lactated ringers or
normal saline, was used to substitute blood within the coronary artery at the imaging site
[15]. Setup for this technique often required a high degree of clinical skill and experience.
Patients can experience acute coronary syndrome (ACS) symptoms and EKG changes
throughout normal saline flushing. The average duration of vascular obstruction during
TD-OCT is 48.36 14.7 seconds [15]. When comparing the safety of the first-generation
TD-OCT to IVUS, no significant risk was appreciated. In addition to the increased image
quality of coronary lumen borders, the OCT catheters are smaller and can cross narrow
lesions. Later-generation TD-OCT systems use low-molecular-weight dextran, or contrast,
passed through a guide to displace blood, removing the need for an occlusion balloon, and
allowing less experienced operators to perform imaging [2,15].

1.3.2 Frequency domain

In frequency-domain OCT (FD-OCT), also known as Fourier-domain OCT, swept-
source OCT (SS-OCT), or optical frequency-domain OCT, light wave interference is
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achieved through spectrally separated detectors, either time encoded or spatially
encoded, and variable frequency light sources. In contrast to TD-OCT, interferomet-
ric measurements are recorded as a function of optical wavelength and time. A tunable
light source (sweep range of 1250�1370 nm) is used with a fixed reference mirror [2].
This change allowed for decreased scanning time with comparable image quality [16].
Reduced scanning times also decrease the risk for microvascular ischemia during flush-
ing if performed. Significant differences between TD-OCT and FD-OCT are detailed
in Table 1.2.

1.3.3 Spatially encoded

Spatially encoded frequency-domain OCT, also referred to as spectral-domain OCT
or Fourier-domain OCT, utilizes dispersive elements to distribute differing optical
frequencies and extract spectral information via a stripe line-array charge-coupled
device (CCD) or complementary metal-oxide semiconductor (CMOS) sensor [17].
This method allows for full depth imaging on a single exposure (Fig. 1.3).

1.3.4 Time encoded

In time-encoded frequency-domain OCT, also referred to as SS-OCT, the optical
spectrum is filtered in successive frequencies, then reconstituted prior to Fourier trans-
formation. This technique allows for small instantaneous bandwidths at high frequen-
cies (up to 200 kHz) [18].

1.4 Scanning techniques

An interferogram is obtained as the light scattered within a sample is recombined, detailing
information throughout the z-axis [19]. To obtain a multidimensional image, the light
source must be panned if the sample is fixed. A linear scan will produce a two-dimensional

Table 1.2 Comparison of TD-OCT and FD-OCT.

Specifications M3 (TD-OCT) C7-XR (FD-OCT)

Axial resolution (µm) 15�20 12�15
Lateral resolution (µm) 39 19
Frame rate (fps) 20 100
Lines/frame 240 500
Pullback speed (m/s) 0.5�2.0 10�25
Scan diameter (FOV) (mm) 6.8 10
Tissue penetration (mm) 1�2 1�2
Balloon occlusion Highly recommended Optional

TD-OCT, Time-domain OCT; FD-OCT, frequency-domain OCT.
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image corresponding to a tissue cross-section (x�z axes), as opposed to an area scan that
can produce three-dimensional (3D) images (x�y�z axes).

1.4.1 Single point scanning

Single point scanning, also known as line-field confocal or flying-spot TD-OCT,
combines a series of lateral scans (A scans) to produce real-time images (B scans). This
method relies on coherence gating through an axially scanning reference arm and
movement of the sample for two-dimensional lateral scanning [20].

1.4.2 Parallel scanning

Parallel or full-field TD-OCT eliminates the need for sample movement by using
a charge coupled device (CCD) to capture full-field illumination [21]. 3D images
can be generated with a stepping reference mirror coupled with the CCD or using a
two-dimensional smart detector array with a complementary metal oxide semiconduc-
tor (CMOS).

1.5 Pullback

The OCT docking system operates an automated pullback method for probe retrac-
tion within the catheter. A rapid pullback is required to reduce bias introduced by car-
diac movement [22]. Previously, it was needed to occlude the artery during pullback
for imaging acquisition [23]. Current models of OCT use a contrast medium, thereby

Figure 1.3 Spectral discrimination OCT schematics. (A) Spectral discrimination by swept-source

OCT. (B) Spectral discrimination by Fourier-domain OCT. OCT, Optical coherence tomography.
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reducing the risk of further cardiac ischemia and lethal arrhythmias [22,24]. Contrast
injection can be automated or performed manually. There are two distinct pullback
strategies by which OCT can operate, survey mode and high resolution (hi-res) mode
[25]. Although high-resolution mode can increase frame density to 10 frames/mm,
compared to only 5 frames/mm in survey mode, the frame rate is similar between
modalities (180 frames/s). Hi-res mode achieves this by utilizing slower pullback
speeds, 18 mm/s instead of 36 mm/s, and decreased pullback lengths, 54 mm com-
pared to 75 mm. This difference allows for a significant increase in image capture,
540 frames in hi-res mode compared to only 375 frames in survey mode.

1.6 Image interpretation

1.6.1 Basic image orientation and interpretation

Coronary images are most often displayed in a radial cross-sectional view [26]. This
image will always contain the imaging catheter and guidewire shadow frequently
referred to as a comet tail because of its appearance. The vessel wall surrounds the
image, with the blood-cleared lumen in the center. If desired, L-mode can be used to
visualize the vessel in a longitudinal view [25]. The longitudinal view is sometimes
referred to as an ant farm because of its cavernous-like offshoots (Fig. 1.4).

1.6.2 Image interpretation and normal coronary anatomy

Prior to detailing the image qualities of various plaques within the coronary arteries,
one must be able to identify normal anatomy [29]. Current-generation OCT is high
resolution (10�15 µm) and can distinguish between the three vascular tissue planes

Figure 1.4 Normal coronary anatomy and positioning of the OCT catheter. (A) M-mode (axial

view). (B) L-mode (longitudinal view) [27,28]. OCT, Optical coherence tomography.
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(tunica intima, tunica media, and tunica adventitia) [30]. Typically, the intimal layer is
high backscattering, as opposed to the tunica media, which is low backscattering. The
adventitial layer is heterogeneous and easily distinguished from the other two planes
(Fig. 1.5).

1.6.3 Coronary plaque and thrombus characterization

Distinguishing between plaque types and thrombus composition is possible using cur-
rent OCT systems [32]. Plaque composition can be revealed through the analysis of
image homogeneity, reflectivity, and lesion margins [33]. The same principles apply to
thrombus identification [1].

1.6.3.1 Fibrous plaques

Fibrous plaques produce homogeneous high signal (high backscatter) regions that are
low attenuation [34] (Fig. 1.6).

1.6.3.2 Calcified plaques

Calcified plaques produce sharply demarcated borders, although similar to lipid-rich
plaques have regions of low signal [35]. The plaques often appear to be heterogeneous
with low backscatter and low attenuation and may be described as “islands” within
the lumen. Calcium may present as a nodular plaque, superficial, or deep deposit
(Figs. 1.6 and 1.7).

Figure 1.5 Coronary artery with visible vessel intimal layers. (A) OCT image depicting three distinct

layers of the lumenal wall (box). (B) Heterogeneous tunica adventitia (a), low backscattering tunica

media (b), and high backscattering thin tunica intima (c) [31]. OCT, Optical coherence tomography.
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Figure 1.6 Various coronary plaque morphologies. (A) Homogenous high signal fibrous plaque

(arrow). (B) Sharply delineated borders with low signal calcified plaque (arrow). (C) Poorly delin-

eated borders with high attenuation and low signal lipid-rich plaque (arrow). (D) High-

backscattering red thrombus within the vessel lumen (arrow) [31].

Figure 1.7 Calcified plaques. (A) Heterogeneous calcified plaque (arrow). (B) Large circumferential

calcified plaque (arrow). (�) signifies the OCT catheter shadow [36].
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1.6.3.3 Lipid-laden plaques

Plaques that are rich in lipids produce a high attenuation, poorly delineated region of
low signal (low backscatter) [37]. They often appear to be homogenous and are
described as “shadows” or “murky water” (Figs. 1.6 and 1.8).

1.6.3.4 Red thrombus

Primarily composed of red blood cells and fibrin, red thrombi appear as high backscat-
tering (at the leading edge) and high attenuation (beyond the leading edge) protrusions
within the vessel lumen [39] (Figs. 1.6 and 1.9).

1.6.3.5 White thrombus

White thrombi are platelet-rich lesions; they appear to be homogenous with high
backscattering throughout with low attenuation [39,40] (Fig. 1.10).

1.6.4 Imaging coronary stents

Intracoronary metallic stents appear similar to the OCT catheter, with high backscatter
at the leading edge of each strut and a trailing shadow [41]. Neointimal growth may
occur, which can alter the stents’ appearance [42] (Fig. 1.11).

Figure 1.8 Lipid-laden plaque within the vessel lumen (arrow) [38].
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Figure 1.9 Red thrombus (labeled RT) [22].

Figure 1.10 White thrombus (labeled WT) [31].
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1.7 Image artifact

As with any other technology, having a general understanding of image artifact is very
important to avoid misinterpreting findings. Table 1.3 summarizes some types of arti-
facts and potential solutions described in the medical literature [8,62].

1.7.1 Inadequate blood purging

Residual blood within the vessel at the time of image acquisition may cause light
attenuation, which in certain circumstances, can be misclassified as thrombus or other
intravascular lesions. Typically, blood density after purging is low and does not impair
the identification of the vessel lumen or area measurements. If blood is present during
imaging, it will appear as a signal-rich region within the lumen. The high-intensity
signal from within the lumen can cause significant shadowing, causing decreased
lumen wall intensity [63]. Additionally, high scattering red blood cells may cloud the
appearance of stent struts, creating other distortions [merry-go-round (MGR), bloom-
ing, ghost strut] discussed below (Fig. 1.12).

1.7.2 Saturation artifact

Saturation aberrations typically appear as a result of high-intensity signals which exceed
the dynamic range of the data acquisition device [64]. This results in the appearance of
a bright line (or lines) for the A-scan in an image. Depending on the artifactual fre-
quencies, the artifact line can extend radially to the edge of the OCT image. In these
cases, the line may begin to broaden at its periphery. Highly specular surfaces, for

Figure 1.11 Intracoronary metallic stent with stent strut shadow artifact [43].
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Table 1.3 OCT artifacts and mitigation techniques [44�62].

Guidewire shadow Computational and artificial intelligence methods

• A technique that combines Expectation-Maximization
(EM) and Graph-Cuts (GC), and postprocessing
refinements using a convex hull approach to eliminate
the guidewire shadow artifact [45].

• Dynamic programming method used for artifact
correction [46].

• A computational method using a combination of
discrete wavelet packet frame (DWPF) and an
adapted version of the Otsu threshold to ascertain
lumen segmentation [47].

• Multistep automatic lumen contour detection
methodology using Otsu binarization and intensity
curves, lumen contour position correction, and image
reconstruction and contour extraction [48].

• ARC-OCT image processing methodology that
relies on the transformation of OCT images
according to reflectivity and absorption of the tissue
and local regression using weighted linear least
squares and a polynomial model to achieve artifact
correction [49].

• Automatic distance regularized level set-based
segmentation algorithm [50].

• Morphological corrosion operation, region removal,
and orientation comparison are used to remove the
catheter and guidewire altogether. By implementing
this method, the catheter and guidewire can be
removed completely regardless of position and shape
irregularity [51].

Physical removal, adjustments, and novel guidewires

• Guidewire shadow may be reduced by detaching the
guidewire from the imaging catheter, that is, moving
the guidewire close to the vessel wall, or by
exchanging it for a smaller diameter wire, or by
removing the guidewire. Furthermore, shadows from
guidewires with a sparse spring coil are smaller than
their actual diameters [52].

• Placing the catheter in the least eccentric position
will avoid OCT underestimation of length and
overestimation of diameter [53].

• Specialized guidewire, which had a small diameter
and lacked the dipping polymer structure, produced
fewer shadow artifacts than its generally used
counterparts [54].

(Continued)
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Table 1.3 (Continued)

• Physical removal of the guidewire may be performed
in research grounds [44].

• Physical removal of the catheter has also been
implemented in clinical settings [55].

Ghost lines Ghost lines or rings are processed separately and removed
via a rapid algorithm that detects circular objects based
on Hough transform [56].

Concentric diplopia Catheter reshaping to its original configuration eliminates
this artifact [44].

Residual blood • An automatic level set-based segmentation algorithm
is used to eliminate noise and blood artifact [50].

• A method that employs image enhancement, median
filtering, binarization, and morphological closing to
reduce speckle noise, and minimize the effect of
blood artifacts [51].

• Adjusting flushing settings and re-flushing catheter
before obtaining a new image. If there are concerns
about contrast use, consider using alternate solutions
such as Dextran [44].

Gas bubbles • Adequately preflushing catheter will avoid this
artifact [44].

Artifacts related to catheter location
and movement, and NURD

• A single beam motion-tracking scheme is used to
reconstruct a longitudinal map of the coronary artery.
Motion distortion compensation is performed by
tracking the relative longitudinal velocities of a catheter
employing a single beam [57].

• Commercial systems for image stabilization and
NURD compensation using a global rotational block
matching-type technique. Computerized
mathematical models using dynamic time warping,
finding a continuous path through a cost matrix that
measures the similarity between regions of two
frames being aligned [58].

• Research method using a technology named
“Heartbeat OCT” combines a fast Fourier domain
mode-locked laser, rapid pullback, and a micromotor
actuated catheter, eliminates NURD and motion
artifact [59].

• Investigational method using 4D magnetic particle
imaging-guided catheter tracking corrects for motion
artifact due to catheter bending and heartbeat [60].

Sew-up or seam artifact • Faster acquisition rate and higher pullback speed [61].

(Continued)
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example, stent struts, are usually identified as the cause of such artifacts, although
guidewires, microcalcifications, and cholesterol crystals can be implicated (Fig. 1.13).

1.7.3 Nonuniform rotational distortion

Any variation in the angular velocity of the mono-fiber optical catheter can result in
image distortion [65]. Nonuniform rotational distortion (NURD) is typically the result
of imperfections of the torque wire or catheter sheath crimping, causing impairment
of smooth rotation of the optical catheter. Tortuous vasculature can also impair optical
catheter rotation, causing similar distortions [66]. NURD’s typically appear as image
blurring or smearing in the lateral direction (Fig. 1.14). Due to smaller probes used in
OCT, this type of image aberration is seen less often compared to IVUS.

Table 1.3 (Continued)

Obliquity and eccentricity • Automatic lumen segmentation technique based on
wavelet transform and mathematical morphology [47].

Blooming artifact • Adjusting flushing parameters, including the use of a
viscous fluid flush medium to adequately clear blood
from the lumen, reduces the blooming artifact [62].

OCT, Optical coherence tomography.

Figure 1.12 (A) Retained luminal blood in a coronary artery during OCT imaging. (B) Retained

blood within a stented superficial femoral artery. Stent struts are also visualized with merry-go-

round artifact (arrows) in the periphery [62]. OCT, Optical coherence tomography.
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Figure 1.13 Image saturation artifact secondary to stent struts can be seen as tangential lines

radiating outward (arrows) [62].

Figure 1.14 Nonuniform rotational distortion can be seen between the two lines [62].
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1.7.4 Sew-up artifact (seam artifact)

In cases of rapid wire movement or vessel motion, light data may become misaligned
during image formation, which may appear as lumen wall discontinuity [64]. As stated,
these artifacts typically appear as gradients along the lateral direction at the lumen wall
but can also appear within the vessel (Fig. 1.15).

1.7.5 Fold-over artifact

Fold-over artifacts are a byproduct of modern OCT systems (FD-OCT). When imag-
ing large vessels or branching arteries, the lumen or structure borders often fall outside
the field of view [64,67]. Signal aliasing, sometimes referred to as phase wrapping,
occurs along the Fourier transformation, producing an image that appears to fold back
onto itself in an inverted reflection. When this distortion is present, vessel geometry
and dimensions cannot be accurately assessed (Fig. 1.16).

1.7.6 Bubble artifact

Small gas bubbles sometimes form within the silicon lubricant between the sheath and
revolving fiber-optic catheter in TD-OCT. Due to the considerable variation in the
refractive index between the lubricant and the bubbles, high backscattering signals
with associated shadowing will be produced. This, in effect, reduces the signal

Figure 1.15 Sew-up or seam artifact can be appreciated at the 6 o’clock position as a discontinu-

ous luminal border. (�) signifies the guidewire shadow [62].
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intensity of the vessel wall [68]. This artifact can easily be identified when a distinct
region of brightness is noted within the catheter (Fig. 1.17). Bubbles are often
introduced when the imaging catheter is placed without correct preflushing.

Figure 1.16 Fold-over artifact (arrow) [62].

Figure 1.17 (A) A luminal bubble can be seen adherent to the catheter (center arrow), with an

associated bubble shadow (arrow to right) causing surrounding tissue distortion (top two arrows).

(B) A bubble can be seen inside the catheter (inset) [62].
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1.7.7 Tangential light drop-out

During certain circumstances, the OCT catheter may be positioned against an arterial
wall causing light to be emitted nearly parallel to the luminal surface. This positioning
can cause an appearance of attenuation in the absence of light penetration [68]
(Fig. 1.18). This artifact may be confused for a thin-capped fibroatheroma, accumu-
lated macrophages, a lipid collection, or even a necrotic core. Therefore it is essential
to interpret images that are obtained nearly parallel to the OCT light beam with cau-
tion and consideration for an artifact phenomenon.

1.7.8 Merry-go-round artifact

The Merry-go-round (MGR) artifact is a result of increased distance between the A-
lines, larger beam spot diameter in far field, or residual blood attenuation, all leading
to reduced lateral resolution. It appears as an elongation of the stent strut arc length
laterally [69]. During 3D imaging, MDR artifact can create the appearance of addi-
tional struts that do not exist, termed ghost struts (Fig. 1.19).

1.7.9 Blooming artifact

Stent struts are highly reflective and can cause high-signal density at the surface, caus-
ing axial stretching of the stent strut, also referred to as blooming [61]. The increased
strut reflection thickness is termed blooming thickness. This effect can be compounded
by residual blood artifact (Fig. 1.20).

Figure 1.18 (A) Tangential light dropout can be seen between the lines (circled), producing the

appearance of coronary pathology. (B) A histologic, hematoxylin and eosin-stained slide depicts

the location of tangential light drop-out (circled). No necrotic core is visualized on histology [62].
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Figure 1.19 Stented vessel with luminal blood artifact. The stent struts can be seen with MGR

artifact (arrows) [62]. MGR, Merry-go-round.

Figure 1.20 Stented vessel with blooming and MGR artifact [62]. MGR, Merry-go-round.
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1.8 Clinical applications

OCT enables physicians to overcome the limitations of coronary angiography, provid-
ing precise data about coronary anatomy and plaque characteristics, which are valuable
in risk stratification and treatment options [4].

1.8.1 Plaque analysis

Recognition and awareness of plaque composition is important because plaque histopatho-
logic features may alter treatment options and clinical outcomes. It has been estimated that
thin cap fibroatheromas (TCFA) are responsible for greater than 80% of vulnerable plaque
rupture resulting in ACS. TCFAs are defined as lipid-rich coronary plaques (lipid arc with
any plaque in $ 2 quadrants) with a thin fibrous covering less than 65 µm at its thinnest
segment [32,70]. Other high-risk lesions include plaque erosions and calcified nodules.
Early identification of plaque characteristics is necessary to improve clinical outcomes.
Current generation high-resolution OCT can identify TCFAs at an early stage, detecting
caps less than 100 µm [71]. In addition to earlier detection, OCT can more precisely char-
acterize plaques compared to other imaging modalities, including IVUS [72]. Comparisons
between OCT and IVUS imaging can be seen below (Fig. 1.21).

1.8.2 Diagnostic imaging: stable coronary artery disease

Although fractional flow reserve (FFR) remains the gold standard for estimating the
pathophysiologic effects of a coronary lesion, imaging modalities such as IVUS and
OCT can aid in plaque characterization for more accurate risk stratification and inter-
vention planning [74]. Some current-generation OCT models allow for automated
volumetric lumen segmentation, eliminating reader error and variability between
operators, previously present with IVUS [75].

1.8.3 Interventional imaging: acute coronary syndrome

When compared to coronary angioscopy, intravascular OCT has a 100% sensitivity for
detecting intraluminal thrombus, compared to the 33% sensitivity of IVUS. As such,
intravascular OCT has been deemed the gold standard for the detection of fibrous pla-
que rupture [76]. Published literature has also detailed intravascular OCT as a reliable
method for the detection of non-CAD-related ACS, including coronary artery dissec-
tion, which may reduce unnecessary stenting [77,78].

1.8.4 Postintervention imaging

Although IVUS has been viewed as the imaging modality of choice for coronary stent
evaluation, it is still somewhat limited by its low resolution in evaluating neointimal
hyperplasia (NIH) [79]. Some studies have shown OCT to have increased diagnostic
accuracy for the detection of in-stent lesions, specifically lesions which occupy ,30%
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of the stent area [43]. Modern generation OCT systems have also shown improved
detection of incomplete stent apposition, as well as detection of uncovered struts,
compared to IVUS. Incomplete stent apposition is defined as a separation between the
stent strut and the arterial intimal wall, not including cases of jailed coronary branches,
which have evidence of blood flow [80,81].

Malapposition is any distance between the strut and the lumen that is greater than
the strut thickness plus the axial resolution of the OCT system in use [82]. It has been

Figure 1.21 OCT and IVUS images of thin and thick calcium plaques. (A) Thick calcium plaque

marked by (�), visualized by OCT. (B) Thick calcium plaque marked by (�), visualized by IVUS. (C)

Thin calcium plaque marked by (x), visualized by OCT. (D) Thin calcium plaque marked by (x), visu-

alized by IVUS [73]. OCT, Optical coherence tomography; IVUS, intravascular ultrasound.
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well documented that the distance between the intimal wall and strut in some malap-
posed stents decreases with time due to NIH. Although this has been documented,
one must not rely on NIH for stent placement. It is still crucial that interventionalists
maximize positive outcomes with adequate stent placement.

Longitudinal stent deformation (LSD) is a feared complication of PCI, as it has
been associated with in-stent restenosis (ISR). Although LSD can be difficult to iden-
tify on angiography, it is easily detected by OCT [83]. During repeat intervention for
ISR, OCT provides high-quality images to ensure complete apposition during balloon
inflation [84].

1.9 Safety and complications

Contemporary OCT is relatively safe, only using 5�8 mW of applied energy, which
allows for minimal risk of functional or structural electric injury to biologic tissues.
Previously, risk of ischemia during luminal blood displacement was possible. Modern
systems are capable of rapid flushing and imaging, greatly reducing this risk [85].
Similar to other coronary angiographic procedures, there is a risk of contrast-induced
nephropathy, coronary dissection, coronary spasm, and arrhythmia, although these
risks are not specific to OCT. Access site injury, hematoma, bleeding, and thrombosis
are also risks, although again are not specific to OCT imaging. Major risks include
myocardial infarction, major embolization, and death and occur ,1%.

1.10 Innovations of OCT

Throughout the recent past, many iterations of OCT have been developed and
employed in clinical practice. Below, we have detailed the most pertinent OCT sys-
tems (since 2009) with specific mention of crucial differences. Currently, two types of
catheters can be used for OCT systems: the Dragonfly Intravascular Imaging Catheter
and the Dragonfly Duo OCT Imaging Catheter [22].

1.10.1 C7-XR system

In 2009 the OCT pioneer, LightLab Imaging Inc., was granted approval by the United
States Food and Drug Administration for its C7-XR System in addition to their C7
Dragonfly Imaging Catheter. Although already used in numerous countries throughout
Europe and Asia, this was the first approval for OCT in advancing coronary angiography
in the United States. The C7-XR Imaging System was the first FD-OCT System capable
of quick high-resolution (15 µm) images in under 3 seconds (100 fps) [86]. This system also
offers nonocclusive imaging capabilities, a step up from previous generations of OCT imag-
ing. This breakthrough technology has since allowed clinicians to more accurately assess
intracoronary luminal abnormalities, occlusions and optimize therapeutic options [87].
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1.10.2 ILUMIEN system

Additional advancements in OCT were achieved with the release of the ILUMIEN
System. This system can measure FFR by using radio waves from the proximally
placed aortic pressure transducer and a distally aligned intracoronary pressure trans-
ducer. Using a combination of the functional aspects of FFR and anatomical aspects of
OCT, clinicians are able to accurately detail the extent of coronary artery disease,
improving overall PCI outcomes [4,88]. The ability to seamlessly switch between FFR
and OCT was also introduced with this system.

1.10.3 ILUMIEN OPTIS system

Similar to the ILUMIEN System, the ILUMIEN Optis System integrates both OCT with
FFR technology, although it also offers live 3D imaging with automated measurement soft-
ware [89,90] (Fig. 1.22). The finer resolution obtained with the ILUMIEN Optis System
allows for improved microscopic visualization of coronary disease. This system incorporates
the Dragonfly Duo Imaging Catheter; this catheter allows for improved catheterization
speeds by reducing pullback time. The ILUMIEN Optis System is also equipped with
PressureWire Aeris technology, which can provide measurements of pressure differences in
coronary blood flow.

1.10.4 OPTIS integrated system

The current OPTIS Integrated System is able to provide vessel image coregistration
in addition to a tableside controller. The controller allows the clinician to review images
on the catheterization lab monitor without breaking the sterile field. Live-feed

Figure 1.22 3D-OCT image of bifurcated coronary artery lesion with stent strut detection. The

guidewire can be seen within the vessel lumen [39].
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coregistration allows the clinician to view the OCT image alongside angiography [91].
Automated measurement technology, as was provided in prior systems, is also available [92].

1.10.5 OPTIS mobile system

The OPTIS Mobile System provides the same capabilities as the OPTIS Integrated
System but has the added benefit of being mobile [93]. This system continues to fea-
ture OCT and angiography coregistration coupled with FFR. The tableside controller
continues to be a standard feature. The mobile aspect allows hospitals and clinicians to
work in multiple catheterization labs without changing equipment, allowing for
broader clinical applications.

1.11 Clinical trials

1.11.1 ILUMIEN I trial

At the time of publication, the ILUMIEN I trial was the largest nonrandomized, pro-
spective observational study of its kind to determine the effects of pre- and postproce-
dure OCT on operator decision-making and clinical outcomes in patients undergoing
PCI for unstable angina, stable angina, or non-ST elevation myocardial infarction
(NSTEMI). The study results were profound, finding that OCT altered operator
decision-making in 66% of cases, with 98% of patients achieving a favorable clinical
outcome [4].

1.11.2 ILUMIEN II Trial

The ILUMIEN II trial then evaluated measurement accuracy between OCT and
IVUS, specifically the degree of stent expansion within a coronary artery. The degree
of stent expansion was defined as the stent area divided by the average of the proxi-
mal/distal lumen areas. Data regarding minimal stent area achieved after PCI were
obtained from the ILUMIEN I and ADAPT-DES trials [4,94]. The study found no
significant difference between OCT- and IVUS-guided stent expansion (72.8% vs
70.6%, with a P5 .29) [95]. When comparing major tissue protrusion, stent edge
dissection, intramural hematoma, and stent malapposition, there was no difference
between OCT- and IVUS-guided interventions [95].

1.11.3 ILUMIEN III Trial

The ILUMIEN III trial compared OCT, IVUS, and angiography-guided PCI minimum
stent area. The final average minimum stent areas for OCT, IVUS, and angiography
were 5.79 [2], 5.89 [2], and 5.49 mm [2], respectively [96]. These findings suggested
that OCT-guided PCI is not inferior to IVUS-guided intervention. Major adverse
cardiac events were 4% with OCT, 1% with IVUS, and 1% with angiography [96].
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1.11.4 ILUMIEN IV Trial

At the time of publication, the ILUMIEN IV trial, which is comparing OCT and
angiography-guided PCI postintervention lumen area and diameter, is currently in
progress [97]. The study was started on March 26, 2018, and is estimated to be com-
pleted by July 31, 2022. This is the first large-scale, globalized, prospective, double-
blinded, randomized study in which researchers are assessing final stent dimensions
with OCT imaging after angiography-guided and OCT-guided intervention. The trial
has enrolled approximately 3650 patients in 125 medical centers across Europe, Asia,
and North America.
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CHAPTER 2

Technique of cardiac magnetic
resonance imaging

Ahmed Abdel Khalek Abdel Razek, Dalia Fahmy and Germeen Albair Ashmalla
Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt

2.1 Introduction

Cardiac MRI aimed to assess different congenital and acquired heart diseases, for exam-
ple, myocardial ischemia or infarction, cardiomyopathies, cardiac masses, valvular disease,
pericardial lesions, coronary artery disease (CAD), as well as complex congenital anoma-
lies. The good soft-tissue contrast, the feasibility of a large FOV, multiplanar acquisition
adeptness in addition to absence of ionizing radiation are advantages of cardiac MRI.
On the other hand, the disadvantage of cardiac MRI compared to CT is the inability to
assess coronary arteries calcifications. Other limitations of cardiac MRI include: not
being suitable for imaging extremely large, claustrophobic or patients with non-MR
compatible implants (e.g., old versions of cardiac pacemaker), also Gadolinium-based
MR contrast administration is confined to patients with good renal function, lastly, pro-
longed scan time compared with computed tomography and echocardiography. Till
now there are no reports of any possible drawbacks on fetal viability, yet pregnancy is
still included in the list of relative contraindications [1�5].

2.2 Physical principles and pulse sequences

2.2.1 Data acquisition

When dealing with cardiac MRI, there are few obstacles to be overcome. To begin
with, the rapid and the multiplex mobility of the heart in addition to the pulsating
flow of the great vessels, movement during inspiration and expiration, high ventricular
blood flow during systole that may be as high as 200 cm/s. However, this problem is
solved now by implementing ECG (cardiac) gating; navigator echo respiratory gating;
breath-hold techniques; rapid, high-performance gradients; improved field homogene-
ity; and advanced pulse sequences [1�4]. ECG gating is done in two ways prospective
or retrospective. Prospective method means commencing imaging is initiated at same
timing as the R wave, so limited images are gathered. In clinical practice, arrhythmias
and frequent change in heart rate during examination even in patients with regular
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rhythm hinder the application of this technique. On the other hand, retrospective gat-
ing means that images are acquired along the whole cardiac cycle followed by selec-
tion of specific data later on during postprocessing. Retrospective gating is therefore
preferable to overcome problems caused by arrhythmias on the behalf of more time
consumption to gain data. Navigator echo respiratory gating permits gathering of
images without the need for respiratory holding. An excitation pulse is put at the level
of the diaphragm or heart to monitor respiratory movement in order to collect image
at the end of expiratory phase [1,2].

2.2.2 Morphologic sequences

Morphologic sequences provide the most value when analyzing complex congenital
anomalies and measuring the span of cardiac masses. At least one anatomical series will
be done in the standard thoracic axial plane; however, additional oblique planes are
imaged as well (horizontal and vertical long-axis views, two- and four-chamber views,
short-axis view, views of the valves, outflow tracts, and great vessels) [1�3]. Cardiac
MR sequences can be categorized into two groups, according to their myocardium-
blood pool native contrast—dark (black) blood (Fig. 2.1) and bright (white) blood
(Fig. 2.2) sequences. It is often worthwhile to employ both of them for easier
comparison.

Figure 2.1 Dark blood sequence: Double inversion recovery (dark-blood MRI imaging sequence) of

the short axis of the heart, showing better delineation of the anatomical details of the myocardium

with nullifying of signals from blood.
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2.2.2.1 Dark blood sequences

Dark blood sequence provides a very clear distinction between the vessel wall and
blood (Fig. 2.1). They are usually performed at multiple slice locations during diastole
to produce a stack of 4�5 mm thick slices. Dark blood images utilize a series of inver-
sion recovery prepulse to cancel unwanted signal—respectively, a double IR prepulse
to cancel blood signal or a triple IR prepulse to null blood and fat. Examples of the
imaging engines used are TSE, and its faster variant half-Fourier acquired single-shot
turbo spin echo. Additionally, the short-tau inversion recovery (STIR) modifier can
be of great use for identifying high signal jeopardized myocardium in the setting of
acute myocardial infarction. T2-STIR is also used to search for edema associated with
acute infarction [1�4].

2.2.2.2 Bright blood sequence with cine functional sequences

Bright blood sequences are built upon the SSFP and EPI gradient engines and are an
integral part of CMR examinations. They display a high-intensity signal from fast-
flowing blood and are excellent at evaluating cardiac function (Fig. 2.2). These
sequences continuously image a single slice across several whole cardiac cycles, creating
a short averaged-out movie (cine) of the heart in motion. The cine contains 20�30
frames acquired with 30�50 ms temporal resolution. Classically, a stack of short-axis
slices (6�8 mm thick, with 1�2 mm gaps in between) is each turned into individual
cine series to achieve adequate coverage [1�4]. Thus, they facilitate accurate estima-
tion of the systolic and diastolic motion of the ventricular walls, both quantitative and

Figure 2.2 Bright blood sequence: SSFP (Bright-blood MRI imaging sequence) of the short axis,

showing significant contrast between the myocardial tissue and flowing blood.
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qualitative (Fig. 2.3). Also, measurements can be made of left ventricular end-diastolic
and end-systolic volumes, ejection fraction and myocardial mass can be estimated.
Additionally, blood velocity and flow direction could be measured using the modifier
Phase Contrast (velocity encoded, VENC)—a task impossible for CT, and not easily
reproducible with the United States. Phase contrast measures the phase shift from
blood protons moving through the magnetic field [without the need for intravenous
(IV) contrast material], which is proportional to their speed, allowing for estimation of
speed and its direction. A cine series encompassing several phases of the cardiac cycle is
created. Velocity is encoded in a way reminiscent of color Doppler in ultrasound. The
selected plane is usually at right angle to a vessel, chamber, or valve of interest, with
antegrade flow coded in light gray to white and retrograde flow coded in dark gray to
black, while stationary tissues appear intermediate gray. Time-velocity and time-flow
curves can be generated. VENC is valuable for evaluating shunts and shunt fractions,
determining pressure gradients across stenotic valves and determining regurgitated flow
(Fig. 2.4) [4,5].

2.2.2.3 T1 and T2 mapping

In the last few years CMR mapping techniques have been introduced, enabling the
objective numerical measurement of signal strength in every pixel of either T1-, T2-, or
T2�-weighted mapped images (which is impossible to do in images acquired via a differ-
ent sequence). This technique is mostly used for analyzing diffuse myocardial changes.
T1 mapping, for example, is very precise in detecting infiltrative disease—myocarditis,
amyloidosis, sarcoidosis, and cardiomyopathies. It is usually performed in two phases

Figure 2.3 Cine functional sequence: Gradient recalled echo sequence in long axis of the heart.
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(pre- and postcontrast). T2 mapping is excellent for distinguishing edema, while
T2�-mapping is less frequently used, as it demonstrates only myocardial iron overload
(e.g., in hemochromatosis).

It is understood that T2 mapping sequences provide quantitative evaluation of myocardial
edema (objective T2 relaxation time), not qualitative evaluation (arbitrary signal intensity)
unlike the T2-STIR sequences. T1 and T2 mapping play a major role in recognition of
minor and subtle myocardial changes not evident in other techniques. Studies are collecting
data in order to reach range of T1 and T2 values that are specific to each cardiac disease.
This step would be helpful for precise measurement of ECV expansion and assessment of
the condition of the myocardium [6�8]. Combined T1 mapping and 4D flow pave the
way for a better realization of the consequences of any change in hemodynamics upon the
myocardium. The 4D flow technique could enhance the understanding of the pathophysiol-
ogy of different vascular diseases and the hemodynamic effect of flow abnormalities, in
addition to preoperative planning. [9�11].

2.2.2.4 Myocardial perfusion

Perfusion MR imaging can detect perfusion of contrast medium within the tissues that
can be used in different regions of the body. CMR perfusion provides a tool of high
sensitivity and specificity to assess CAD. Perfusion is done at rest and at (adenosine-
induced) stress. Perfusion sequences (balanced SSFP, GRE, or EPI engine) create a
short movie of the blood either by using an exogenous IV gadolinium-based tracer or
endogenous arterial spins. As the blood washes in and passes through the myocardium,
areas with lower signal (hypointense areas) are easily recognized as hypoperfused. It is

Figure 2.4 Phase-contrast MR sequence: Phase image used for calculation of peak velocity and

pressure gradient.
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necessary to get multiple images within a single cardiac cycle so, image quality invari-
ably diminishes, especially in tachycardic patients, where RR intervals are much short-
er. Better signal-to-noise ratios for this method can be achieved at 3 Tesla than at 1.5
Tesla [12�20].

Gadolinium-based perfusion is preferred as it allows for strong contrast in T1-weighted
images, large coverage of myocardium, and adequate spatial resolution. When doing the
stress perfusion examination, adenosine dosed at 140 µg/kg of patient weight per minute is
injected over a period of 2�3 minutes. It acts as a vasodilator by influencing the A2A
receptors. Its effect is a maximum dilation of the distal arteriolar bed. Coronary flow can be
thus increased by about four times in the absence of stenosis. In significantly stenotic arter-
ies, however, there is no change, resulting in a “steal phenomenon” from the stenotic to
the normal arteries. The zones supplied by normal arteries demonstrate a multifold flow
increase, while the ones corresponding to stenotic arteries show little or no flow increase,
appearing hypointense. Usually, the stress test precedes the rest test with roughly 15 minutes
in between them, necessary for complete washout of the first Gadolinium bolus. Finally,
another 10�15 minutes after the rest test, a late Gd enhancement series can be performed.
To clarify further, IV gadolinium is given once during the stress test, and once more during
the rest test [20�25].

2.2.2.5 Delayed contrast-enhanced CMR and myocardial viability

Viability studies are mostly performed with late Gd enhancement, using T1-weighted
GRE sequences. The images are made with a single IR prepulse, aimed at nulling
the signal from normal myocardium, so only the pathologically enhancing structures
can be of high signal. Healthy structures are to appear black, while blood within the
left ventricle should be of intermediate signal strength—neutral gray. The standard
protocol includes precontrast images, first-pass perfusion images with an initial Gd
bolus, followed by a second Gd bolus and then, finally, the most important series—
delayed imaging at about 10�20 minutes. This is thought to be due to the fact that
in acutely infarcted myocytes, the ruptured membranes enable Gd to pass intracellu-
larly via diffusion. Conversely, chronic infarctions consist of scar tissue with greater
interstitial space than normal myocardium—therefore, Gd would accumulate within
the scar [17�25].

2.2.2.6 CMR angiography

It is usually done through IV injection of gadolinium-based contrast and requires a fast
three-dimensional (3D) spoiled GRE sequence. This is a 3D sequence without inter-
slice gaps permitting perfect and smooth multiplanar reformats. This also allows for the
building of cast-like volume renderings of the contrast-filled lumen of the vessels as
well as cardiac chambers (true 3D models) which are extremely valuable in evaluation
of congenital vascular diseases and great vessels of the heart (Fig. 2.5) [26�30].
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CAD is considered number one cause of death all over the world. Luminal stenosis
occurs due to the buildup of atheromatous plaques over long duration. Early detection
of these lesions is necessary to facilitate a proper treatment plan (either percutaneous
angioplasty or coronary artery bypass graft surgery) before irreversible damage to myo-
cardial muscle occurs. Coronary arteries could be assessed in bright blood sequences
(spoiled gradient echo and SSFP) or after gadolinium injection. One drawback is the
incomplete coverage of the whole coronary tree in single breath hold. So, a free-
breathing technique and slow infusion (0.3 mL/s) of gadolinium were suggested. This
technique facilitates comprehensive imaging of coronary arteries in short duration pre-
serving high sensitivity and specificity compared to conventional cardiac angiography.
Coronary artery stiffness could be assessed by measuring degree of dilatation after
administration of vasoactive drug or by monitoring change in diameter in systole and
diastole. Flow reserve within coronary arteries could be assessed by phase-contrast MR
imaging. CMR provides a noninvasive tool to evaluate coronary wall thickness and
remodeling. New techniques are developed to overcome motion related to cardiac

Figure 2.5 Contrast MR angiography: Contrast MRA of the thoracic aorta that can detect thoracic

aorta and its main branches.
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and respiratory cycles as well as high heart rate and irregular heartbeat (arrhythmia) as
these are the main factors hindering the use of CMR in clinical practice [26�35].

2.2.2.7 Arterial spin labeling

Arterial spin labeling is designed for noninvasive quantification of tissue blood flow
without the need for contrast media. Radiofrequency pulses (RF) are applied to
change the longitudinal magnetization of arterial blood, creating an endogenous label
that decays with time constant which has the same duration as the T1 relaxation time.
Then a delay time is given to permit passage of labeled blood into tissues, followed by
image acquisition. Another group of images is taken without a labeling pulse. The dif-
ference between these two image groups represents the amount of labeled blood
inflow. It has several applications regarding characterization and evaluation of brain
tumors and head and neck cancer. In cardiac imaging, this could be used to replace
the first-pass CMR and nuclear medicine [36�42].

2.2.2.8 Magnetic resonance spectroscopy

Magnetic resonance spectroscopy (MRS) is a method designed to evaluate cellular fea-
tures in vivo by detection of relatively small molecules in intra- and extracellular
spaces. MRS proved to be an effective tool in differentiation of various brain and neck
tumors. Cardiac MRS applies appropriate RF pulses to the desired tissues with subse-
quent modification of the magnetic momentum of susceptible nuclei. At the end of
the stimulation, a certain amount of energy is released from the excited nuclei and can
be collected as a spectrum. In order to avoid signal contamination caused by nearby
blood and epicardial fat, the region of interest is placed in the interventricular septum.
In vivo, 1H-MRS has been mainly used to assess the cardiac intracellular fat (as TGs
and UFAs). Few studies reported that progressive reduction of ventricular function
was correlated to increased myocardial TG content, yet available data from different
studies are still conflicting. On the other hand, heart failure (HF) showed low Cr that
is correlated with LV function. The cardiac PCr/ATP ratio was improved during clin-
ical re-compensation with standard HF treatment and in obese patients losing weight,
again correlating with improved LV function [43�47].

2.2.2.9 Cardiac diffusion tensor imaging

Diffusion tensor imaging is commonly used in evaluation of brain tumors and preop-
erative mapping of gliomas. Diffusion tensor cardiovascular magnetic resonance
assumes that the restrained diffusion can be pictorially demonstrated by an ellipsoid
shape and mathematically described by a tensor that is measured in at least six different
directions. The tensor gives information about how freely water can diffuse in the
myocardium via mean diffusivity (MD). The degree of diffusion restriction is expressed
by fractional anisotropy (FA) and reflects the underlying organization of the
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myocardium with grading where 0 represents highly disorganized cells, and 1 repre-
sents perfectly linearly organized cells. For example, in myocardial infarction, there
was elevated MD and decreased FA in the segment involved in acute infarction com-
pared with the normal segment, attributed to disorganization of ischemic cells
[48�57].

2.2.3 Future directions

2.2.3.1 Artificial intelligence

Artificial intelligence recently applied in the cardiac imaging that depends on the
automatization tasks, improving diagnostic accuracy, and reducing reading time for
image analysis [58,59].

2.2.3.2 Structured reporting

Structured reporting was applied in different regions of the body such as coronary
artery, chest, neck, liver, and prostate. Recently structured reporting for cardiovascular
magnetic resonance imaging was released that may help to standardized reporting
system among radiologists [27,60�69].
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3.1 Introduction

The surface electrocardiogram (ECG) is a common diagnostic test in clinical settings.
It reflects a time-voltage signal of the averaged changes over time in cell membrane
polarity of the myocardium (heart tissue), and it constitutes one of the well-studied
physiological signals of the human body [1�6]. The ECG signal has been widely used
for risk stratification in both the general population and in those with cardiovascular
disease, with various ECG abnormalities predicting risk of adverse events [7]. Because
of this broad applicability, accurate computer-generated diagnostic statements are
essential. Basic understanding of both the clinical significance of the ECG waveform
and the technological specifications for signal retrieval and processing are needed for
designing accurate automated analysis systems of the digital 12-lead ECG.

The association between the ECG and the “digital” computer began over 60 years
ago with the early attempts at representing the analog ECG signal as digital samples.
As with any time-varying analog quantity, the ECG can be sampled at an appropriate
frequency and resolution to allow an accurate representation of the original signal to
be stored and processed digitally [8]. Despite the obvious benefits of digital signal pro-
cessing of the ECG, early investigators were greatly frustrated by limitations in sam-
pling and acquisition hardware which made simultaneous multichannel ECG
digitization prohibitive. By the 1970s, however, significant advances in acquisition
hardware meant that millions of digital ECGs were being recorded annually [9]. This
in turn drew attention to the developments associated with the storage of ECG data.
As a result, there are now a plethora of digital file formats for storing the ECG [10].
These file formats can be proprietary or open, and many can be machine readable

45
Cardiovascular and Coronary Artery Imaging
DOI: https://doi.org/10.1016/B978-0-12-822706-0.00005-6

r 2022 Elsevier Inc.
All rights reserved.

https://doi.org/10.1016/B978-0-12-822706-0.00005-6


only, whilst others can be both machine and human readable (e.g., formats based on
the eXtensible Markup Language) [11].

Digitizing the ECG enabled computers to process 12-lead ECGs which paved the
way for automated interpretation. In the 1960s the first computer algorithm to automat-
ically interpret the 12-lead ECG was developed in the 1960s [12]. Until then, due to
the complexity of the signals at hand, interpretation of the ECG was only possible by a
skilled human observer [13,14]. Automation of this task had the potential to make the
ECG a tool of utility devoid of any clinical expert. In settings where the human
observer was accessible, automated interpretation had the potential to assist and augment
the human expert. In fact, the automated interpretation of the ECG is a good example
of human�computer collaboration in medicine, where the “collaboration” between the
human and the computer can improve the accuracy of the final interpretation.

In the USA alone, approximately 100 million ECGs are interpreted by computer-
ized ECG algorithms each year. The automated interpretation of ECGs has become
routine in cardiac care. Having an algorithm interpret the ECG has been shown to
reduce ECG reading time and more importantly, it has been shown to improve the
accuracy of human ECG interpretation, especially for junior interpreters [8]. For
instance, the presence of automated ECG interpretation in the emergency department
improved physicians’ accuracy by 25%, significantly reducing the rate of misdiagnoses
[15�17]. Accordingly, current clinical practice guidelines rely on the standard 12-lead
ECG in establishing diagnostic criteria of disease abnormalities. The next section will
briefly explain how the 12-lead ECG works and will introduce the various diagnostic
categories of diseases it can classify.

3.2 Basic knowledge of ECG physiology

In a healthy heart, the ECG signal resembles the normal physiology of the cardiac cycle
(Fig. 3.1). When the right and left atria contract, the surface ECG records an electrical
signal of a voltage commensurate with the small myocardial tissue in the atria (Fig. 3.1,
black arrows #1). When the right and left ventricles contract, the surface ECG records
an electrical signal of voltage commensurate with the relatively larger volume of the
myocardial tissue of the ventricles (Fig. 3.1, blue arrows #2). As long as this synchrony
is maintained, the ECG signal will assume a specific waveform of a morphology (shape
of deflections), duration (x-axis), and amplitude (y-axis) dependent on the body surface
location of where the ECG electrode is placed. The normal variants of these ECG
waveform characteristics have been extensively studied and standardized as normal refer-
ence for clinical use [18�20]. Any minor alteration in the function or structure of the
myocardium will disrupt the ECG waveform characteristics (i.e., morphology, duration,
amplitude), manifesting with varying signatures from one surface electrode to another.
Quantifying and phenotyping these deviations from normal limits provide very valuable
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means for mapping a given distortion in the ECG signal to a specific abnormality or dis-
ease pathology.

Given that the heart is a three-dimensional organ, sensing the ECG signal from a
single electrode is typically insufficient to detect or map a given waveform distortion
to a specific disease pathology. In a similar analogy to why at least three coordinates
are needed for optimal location calculations, multiple electrodes are needed for accu-
rate disease detection and classification. The current clinical practice relies on ECG
waveform obtained from 12 different leads, hence the term “12-lead ECG.” Each of
these leads provide unique prognostic information that is independent from, and com-
plements, the other leads.

In a nutshell, depending on where the surface electrode is placed, each ECG lead
records waveform deflections in a direction associated with the geometric relation-
ship between that lead location and the specific electrical impulse it senses. This con-
cept is referred to as the cardiac axis and is illustrated in Fig. 3.2. The electrical
impulse starts from the right atrium and travels down toward the middle septum of
the heart. The impulse distorts the baseline polarity of the cell membrane and is,
hence, called depolarization impulse (positively charged). This depolarization impulse
generates a small wave on the ECG (Fig. 3.2, black arrows #1), with upward deflec-
tion in leads facing the impulse (e.g., lead II), and a downward deflection in leads
opposite in direction (e.g., lead aVR). Then, the depolarization impulse propagates
in the middle septum (green arrow #2) before it splits into a right bundle branch

Figure 3.1 The ECG and the cardiac cycle. This figure shows the relationship between the ECG

waveform and the mechanical events of the heart. Atria activity (black arrows) is denoted by a

small ECG deflection while ventricular activity (blue arrows) is denoted by larger, more complex

deflections on the ECG signal. Arrows indicate the direction of blood flow during the contraction of

each chamber. ECG, Electrocardiogram.

47The role of automated 12-lead ECG interpretation in the diagnosis and risk stratification of cardiovascular disease



(blue arrow #3) and a left bundle branch (red arrow #4). This very fast propagation
in the myocardium, and given the larger mass of the ventricle, is reflected on the
ECG as sharp-peaked deflections, with upward versus downward direction according
to the geometric location of the sensing electrode. Since the left bundle branch is
more complex, the impulse continues to propagate in this branch a little bit longer
to reach the remote portions of the left ventricle. The latter results in a sharp termi-
nal deflection at the end of the ventricular depolarization phase (end of the long red
arrow #4).

At the end of ventricular depolarization during which the heart contracts and pumps
the blood, the ventricles relax and restore the normal polarity of the cell membrane.
This is referred to as repolarization and it generates a negatively charged electrical
impulse (Fig. 3.2, gold arrows #5). The repolarization wave moves backward from the
remote portions of the ventricles back into the septum. This slow electrical wave

Figure 3.2 The cardiac electrical impulse and the ECG. The electrical impulse travels from the right

atrium (pacemaker) to the ventricles in phases: (1) depolarization impulse traveling in the atria

(black arrows); (2) depolarization impulse traveling through the septum (green arrow); (3) depolari-

zation impulse traveling in the right bundle branch (blue arrow); (4) depolarization impulse travel-

ing in the left bundle branch (red arrow); and (5) repolarization impulse traveling backward

through the ventricles (gold arrows). The waveform deflections on the ECG depend on the geomet-

ric location of the sensing electrode in relation to the direction of each of these five phases.

Illustrations are provided for lead II [sensed by left leg (LL) electrode] and lead aVR [sensed by the

right arm (RA) electrode] that are approximately opposite in direction. The colors of the ECG wave-

forms are matched to the color of arrows of the five phases of these electrical impulses. ECG,
Electrocardiogram.
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generates a dome-shaped wave on the ECG that again depends on the geometric loca-
tion of the sensing electrode. However, since the repolarization wave is negatively
charged, it results in an upward deflection in lead II as it moves away from it, and a
downward deflection in lead aVR as it moves toward it.

In electrocardiology, the different electrical phases of the cardiac cycle explained
above are labeled as P, Q, R, S, and T (Fig. 3.3). As shown in this figure, atrial depo-
larization is reflected in the P wave, the ventricular depolarization is reflected in the
QRS wave, and the ventricular repolarization is reflected in the T wave. The times
the depolarization impulse take to propagate through the atria and through the ventri-
cles correspond to the PR interval and the QRS duration, respectively. The total time
of depolarization and repolarization in the ventricles corresponds to the QT interval.
In addition to these clinically significant waveforms and intervals, the vulnerable
period that corresponds to the overlap between end of ventricular depolarization and
beginning of ventricular repolarization is called the ST segment. The latter segment
plays a very important role in ECG diagnosis of many cardiac pathologies in the clini-
cal setting.

Figure 3.3 Naming the waves and intervals of the ECG. This illustration shows the onset and offset

of the P wave, QRS complex, and T wave that correspond to atrial depolarization, ventricular depo-

larization, and ventricular repolarization, respectively. Other clinically important intervals are also

illustrated. ECG, Electrocardiogram.
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3.3 The 12-lead ECG

As explained before, the heart is a three-dimensional organ and multiple ECG leads
are required for optimal detection and phenotyping of cardiac pathologies. The stan-
dard 12-lead ECG constitutes the gold standard tool used for disease classification in
the clinical setting. Each of these 12 leads look at the heart from a different direction
and, hence, has unique waveform characteristics. This waveform morphology is based
on the geometric angle between that ECG lead and the instantaneous direction of the
cardiac axis at that moment in time. The location of each of these 12 leads on the
body surface has been optimized to maximize the spatial coverage in both the frontal
plane and the horizontal plane of the heart.

In the frontal plane, three electrodes placed on extremities [right arm (RA), left
arm (LA), and left leg (LL)] are needed to construct six bipolar ECG leads (Fig. 3.4).
The first three frontal leads (I, II, and III) are each based on two limb electrodes and
provide partial coverage of the lateral and inferior walls of the heart (Fig. 3.4, solid

Figure 3.4 The frontal ECG leads. Left panel: using three extremity electrodes, right arm (RA), left

arm (LA), and left leg (LL), a total of six dipolar leads can be constructed in the frontal plane. The

solid black arrows constitute dipolar limb leads (I, II, and III), and the dashed black arrows constitute
augmented limb leads (aVR, aVL, and aVF). Right panel: the waveform morphology in each frontal

lead depends on the geometric angle between each lead and the averaged cardiac axis (large opa-

que arrow). Note that leads better aligned with the cardiac axis are more likely to have dominant

waveform deflections. The color of each ECG waveform morphology is mapped to either a depolar-

ization impulse (red arrow) or repolarization impulse (blue arrow). ECG, Electrocardiogram.
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black arrows). To maximize the frontal view, three additional leads (aVR, aVL, and
aVF) are computed by augmenting two limb electrodes as one of the bipolar points of
the view vector, requiring all three electrodes to compute each augmented lead
(Fig. 3.4, dashed black arrows). The new augmented leads maximize the frontal cover-
age of the heart by providing a true 90 degree inferior viewpoint (lead aVF), a view-
point of the heart apex that is aligned with the cardiac axis (lead aVR), and a proximal
viewpoint of the lateral remote aspects of the left ventricle (lead aVL). The normal
cardiac axis in the frontal plane aligns best with lead II and 2 aVR, both of which
have a dominant upward QRS complex and play an important role in disease
classification.

In the horizontal plane, six precordial electrodes placed on the chest are used to
construct six unipolar ECG leads V1�V6 (Fig. 3.5). The six precordial leads are placed
sequentially from the right ventricle to the left ventricle. Given that the impulse pro-
pagates in the heart vertically (from atria to ventricles) and laterally (from right to left
ventricle), the cardiac axis best aligns with lead V5, which would have the most domi-
nant upward QRS complex and has a unique role in various ECG metric
computations.

Figure 3.5 The precordial ECG leads (horizontal plane). Left panel: using six precordial electrodes

on the chest, a total of six unipolar leads can be constructed in the horizontal plane. The solid

black arrows constitute unipolar chest leads (V1�V6). Right panel: the waveform morphology in

each lead depends on the geometric angle between that lead and the averaged cardiac axis (large

opaque arrow). Note that leads better aligned with the cardiac axis are more likely to have domi-

nant waveform deflections. The color of each ECG wave segment is mapped to either a depolariza-

tion impulse (red arrow) or repolarization impulse (blue arrow). Although the illustration implies

that the cardiac axis aligns with V3�V4, in a real 3-D model it will align with V5. This is because

precordial electrodes are not placed on a parallel line, but rather electrodes V4�V6 are placed 1 in.

lower than the other electrodes. ECG, Electrocardiogram.
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3.4 ECG signal processing

The accurate recording and processing of ECG signal are critical for precise computer-
generated diagnostic statements for evidence-based clinical practice. The processing of
the ECG signal is governed by methodological standards set forth by ISO/IEC joint
working group [21]. Therefore, digital ECG signal processing typically follows a series
of steps that are well-outlined in published guidelines [1]: (1) signal acquisition and filter-
ing, (2) beat detection and classification, (3) segmentation of diagnostic waveform, (4)
waveform featurization, and (5) diagnostic classification. Technical details and clinical sig-
nificance of each of these steps are described herein.

The first step in ECG processing is signal acquisition and filtering. The ECG signal
is displayed in a temporal resolution of milliseconds and amplitude resolution of
microvolts over a 10-second period. Given that sensing electrodes are placed on the
body surface, rather than directly on the heart, the ECG signal is significantly attenu-
ated by the varying impedance levels of thoracic tissue. Thus, the ECG signal will first
need to be amplified and sampled as well as filtered to ensure noise in the signal is
removed. This noise and baseline wander can be caused by movements, and respira-
tion (low-frequency noise); or caused by muscle artifacts, power lines, or radiated elec-
tromagnetic interferences (high-frequency noise). The principal frequency of the QRS
complex and T wave on the body surface are at approximately 10 and 1�2 Hz,
respectively, and most of the diagnostic information in the signal is contained within
0.5�100 Hz in adults. However, using this range for bandwidth filtering has been
shown to distort the high- and low-frequency components of the signal, leading to
inaccurate detection of R peak and ST segment, respectively. Thus, the current
recommendations for routine digital filters require a bandwidth cutoff filter of
0.05�150 Hz. To allow a high-frequency cut-off (low pass filter) of 150 Hz, it has
been shown that a minimum sampling rate of 500 samples per second is necessary to
limit measurement errors in R peak detection to less than 1% [22]. Additionally, the
low-frequency cut-off (high pass filter) of 0.05 Hz has been shown to preserve the
fidelity of ST and T wave measurements but would be inadequate for filtering low-
frequency noise of respiration that leads to baseline wander. Thus, current electrocar-
diographs implement additional baseline drift suppression for coherent alignment of
sequential P-QRS-T waveform templates (Fig. 3.6). For a more technical and detailed
analysis of ECG filtering, readers can refer to the following article [23].

The second step in ECG processing is beat detection and classification. Given that
beat-to-beat variations due to noise, respiration, or other intrinsic physiological pro-
cesses exist, eliminating this unwanted variation within each lead is needed for accurate
ECG measurements. This requires forming a “template beat” for each lead to serve as
a median representative waveform complex. For this purpose, it is recommended to
use the largest-amplitude deflection in each lead as representative of the magnitude for
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that measurement. Given that the QRS complex typically contains the largest voltage
signal in each lead, most algorithms rely on R peak detection to identify individual
ECG beats (Fig. 3.7). However, as seen in this figure, further processing is needed to
address two additional challenges before calculating median representative beats that
are meaningful. First, accurate alignment of P-QRS-T complexes is needed. Methods
for this purpose vary but generally include template matching at R peak and at the
fiducial point preceding the Q wave. Second, nondominant waveform templates must
be removed from the representative beat calculations (i.e., beat #7 in Fig. 3.7). This is
usually achieved using cross-correlation algorithms between individual beats.

Accurate template formation is critical for precise global measurements in subse-
quent processing steps. Therefore, after creating averaged beats (Fig. 3.7, right), it is
recommended to quantify the residual noise in the signal. This is typically computed
as the root mean square (RMS) of the aligned templates during representative beat cal-
culations, which provides an estimate of measurement error to be used as a signal

Figure 3.6 ECG acquisition and filtering. The standard 10-s 12-lead ECG is sampled at 500 samples

per second and filtered in the bandwidth of 0.05�150 Hz. Baseline drift suppression is needed to

ensure the coherent alignment of sequential ECG complexes. ECG, Electrocardiogram.
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quality metric in subsequent steps. Since the representative beat constitutes an arthmic
mean of individual templates, the more heartbeats in the 10-second window, the
lower the residual error in the signal. It has been shown that an RMS error less than
5 µV is needed to limit estimation error to less than 10% in measuring deflections of
20 µV [22], a clinically significant error in ST segment calculations.

Following the formation of lead-specific averaged beats, the third step in ECG signal
processing is the segmentation of the diagnostic waveforms on each of these single-lead
representative complexes. As seen in Fig. 3.8 (left panel), various algorithms can be used
to detect the onset and offset of each waveform in the P-QRS-T complex. This is usually
achieved by using a combination of fiducial points derived from the intercept between sig-
nal slope and the signal isoelectric baseline. Next, given that the ECG signal is simulta-
neously acquired from all 12 leads yielding a time coherent signal, temporal superposition
of these 12 representative beats would allow global segmentation of P-QRS-T waveform
(Fig. 3.8, middle panel), an approach that has been shown to yield more accurate global
measurements. By searching for earliest and latest valid voltage points for P-QRS-T waves
on the temporally aligned individual complexes, global onset and offset points can be

Figure 3.7 Beat detection and classification. This figure focuses on lead V5 from the 12-lead ECG

shown in the previous figure. Left panel: Individual beats in a given ECG lead can be detected

using R peak detection algorithms (marked as red triangles). To remove the evident beat-to-beat

variation, further processing involves template alignment to construct a representative median

(averaged) beat. In addition, further processing is needed to exclude the nondominant beat tem-

plates (beat #7 in this example). Right panel: a representative averaged beat from the same ECG

lead following template alignment and removal of nondominant beats. The averaged beat elimi-

nates most of the beat-to-beat variations observed in the raw signal.
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identified (Fig. 3.8, right panel), which would be used for either global interval measures
(e.g., QRS duration) or lead-specific measures (ST amplitude).

It is worth noting that the global interval measurements would account for errors
in lead-specific measurements. Such errors are attributed to inaccuracies in defining
lead-specific onset and offset points due to differences in template formation and align-
ment. In the example shown in Fig. 3.8, QRS duration measured in lead I and lead
V6 was 97 and 85, respectively, likely due to the absent S wave in V6. However, the
global QRS duration from all 12 leads was 103, which accounts for the observed lead-
to-lead variability in measurements.

Figure 3.8 ECG waveform segmentation and measurements. Left panel: the onset (green triangles)

and offset (red triangles) of P, QRS, and T waves are initially computed based on lead-specific repre-

sentative beats. Middle panel: temporal superposition of the simultaneously acquired 12 leads

would allow multilead estimation of waveform segments. Right panel: using multilead criteria, elec-

trocardiographs can use the temporally aligned representative beats to search for global onset and

offset of waveform segments, which would allow more accurate global interval measurements.

ECG, Electrocardiogram.
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The fourth step in ECG signal processing is feature extraction. Initially, beat-to-
beat RR interval data are extracted from few leads (e.g., II and V1) for rhythm detec-
tion and heart rate computation. Then, from each representative beat in individual
leads, the duration and amplitude of the P wave, Q wave, R wave, S wave, ST seg-
ment, and T wave are extracted. The presence of secondary P0, R0, S0, and T0 waves
(all denoted with prime dash) is extracted for subsequent evaluation of waveform frag-
mentation, notching, and slurring. Next, using multilead criteria, the electrocardio-
graph computes the frontal R and T axes and angles in the frontal plane and the
horizontal plane of the heart. Finally, using the temporally aligned averaged beats,
global measurements of P wave duration, PR interval, QRS duration, and QT dura-
tion are extracted. This comprehensive description of global and lead-specific ECG
features is needed for accurate and reliable rule-based diagnostic statements as
described below.

The fifth and final step in ECG signal processing is making diagnostic classification
statements based on the extracted features from the signal. The ECG signal is deter-
ministic in nature, meaning that every waveform characteristic (i.e., morphology,
duration, and amplitude) correlates with mechanistic and physiological signatures in
the electromechanical function of the heart with a corresponding clinical significance.
These waveform characteristics have been extensively studied and standardized for
diagnostic statements in established clinical practice guidelines. For example, a global
QRS duration greater than 120 ms indicates a defect in the electrical conduction path-
way, where an rsR0 morphology in V1 indicating a right bundle branch block
(RBBB) and rS morphology indicating a left bundle branch block (LBBB), each with
its unique clinical significance (see Section 3.5 below for more details). Thus, the
existing commercial interpretation software is primarily considered rule-based or deter-
ministic algorithms and are regulated by the Food and Drug Administration (FDA) for
clinical use.

Most commercial interpretation algorithms feed the discrete feature characteristics
extracted from the ECG signal into a predetermined algorithm (perhaps akin to a tree of
rules) that denote the binary probability of a given diagnostic statement (see Section 3.6
for more details). More recent approaches incorporate data-driven statistical and machine
learning (ML) techniques to classify ECGs to account for the probabilistic uncertainty in
the decision boundaries. These techniques require large databases of well-documented
cases, with adequate distribution of abnormalities and severity, to train, cross-validate,
and test reliable and generalizable classifiers (see Section 3.8 for more details).

Finally, it is worth noting that due to the complexity of the serial technical steps
needed for ECG processing, it is common to see different diagnostic statements when
different algorithms are run on the same ECG signal. The methodological standards
summarized in this section can help minimize these variations and promote uniformity
of interpretations [1]. Yet, systematic differences in ECG processing and interpretation
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systems could omit or introduce important diagnostic statements, which translates into
current practice standards requiring systematic over-reading of ECGs by experienced
clinicians before any therapeutic treatment decision is made [13].

3.5 Cardiovascular diseases diagnosed by the 12-lead ECG

Most functional and structural changes in the heart alter cell membrane voltage dura-
tion, velocity, speed, or direction, which manifest as variations in the recorded ECG
signal. Accordingly, the ECG provides a valuable bridge between the cellular changes
in the myocardium and establishing a specific clinical diagnosis. The ability of the
ECG to detect such minimal changes, its noninvasive nature, and its ease of applica-
tion has made it a robust screening and clinical diagnostic tool. The utility includes
both nonemergency situations and urgent life-threatening situations. Nonemergency
situations include monitoring patients on heart-altering medications, assessing patients’
health before surgeries, and screening for cardiac abnormalities in high-performing
athletes (e.g., hypertrophic cardiomyopathy or heart enlargement). More crucially, the
ECG is often the first and most important test in cardiovascular emergencies. This
includes conditions such as cardiac ischemia and infarction (decreased blood supply to
the heart), arrhythmia (an abnormal pattern of heart contraction), and heart blocks (a
block in electrical signal conduction across the heart).

Considering the numerous pathologies possible in the heart, corresponding a given
ECG finding with a known clinical diagnosis needs a comprehensive evaluation of the
patient and the acquired ECG by a trained healthcare provider. When detecting such
abnormalities, healthcare providers aim to correspond these changes with the follow-
ing categories of cardiovascular pathologies, and these subsequent possible clinical diag-
noses: rhythm disorders, conduction defects, chamber hypertrophy, or cardiac ischemia
or infarction. These cardiac pathologies are briefly explained in the next few sections.

3.5.1 Rhythm disorders

Rhythm disorders, also known as arrhythmia, refer to an abnormal electrical impulse
in the heart leading to unusual contraction of the heart muscles. The atria and ventri-
cles are anatomically separate, producing different yet always sequential beats. Since
the initial activation of the heart pacemaker occurs in the atria, the sequence of ECG
wave deflections is P-QRS-T, corresponding to atrial followed by ventricular contrac-
tion. Rhythm disorders occur when this sequence is interrupted due to signals either
being produced abnormally from the original heart pacemaker or originating from an
abnormal location in the heart.

The causes of arrhythmia are numerous, ranging from benign causes such as anxiety
and caffeine intake to life-threatening emergencies such as cardiac ischemia, electrolyte
disorders, and drug toxicities. The major concern associated with arrhythmia pertains to
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the compromised ejection of blood from the heart due to the ineffective abnormal
heartbeats. ECG is the mainstay for detecting an arrhythmia, which applies to patients
presenting with sudden onset symptoms such as the feeling of rapid heartbeat, and to
those continuously being monitored during their in-hospital observation.

Since an arrhythmia is reflected in all axes of the heart, a single lead is often sufficient
to discern an ongoing arrhythmia, with that typically being lead II. Identifying the
arrhythmia involves assessing for the presence or absence of P waves, the shape and
duration of QRS complexes, the relationship between P waves and QRS complex, and
whether the heartbeats are produced at regular intervals. Typically, arrhythmias are clas-
sified into being supraventricular (above the ventricles) or ventricular arrhythmias,
depending on whether the source of the abnormal contractions is the upper portion of
the heart or the thicker and stronger ventricles, respectively. Despite the wide range of
arrhythmias, the ECG is universally the most vital tool for diagnosis. Fig. 3.9 shows
some of the common and most clinically significant arrhythmias, which are explained
below as well.

3.5.1.1 Supraventricular arrhythmias

Supraventricular arrhythmia is an abnormal heart rhythm originating from the upper
part of the heart. The presentation widely varies and ranges from being detected on a
routine ECG screening to a life-threatening drop in blood pressure. Accordingly, the
conditions can be managed conservatively with no intervention, to necessitating an
urgent treatment. The hallmark of ECG changes in supraventricular arrhythmias
revolves around the P waves, including absence of the wave or variations in the shape.
Since the QRS reflects changes in the ventricles, the shape of the QRS complex is
typically normal. The following are the major types of supraventricular arrhythmias:
1. Atrial fibrillation: AF refers to irregular depolarization of the atria, with variable con-

duction of the signal from the atria to the ventricles. This produces an irregular

Figure 3.9 Clinically important arrhythmias. This figure shows two examples: atrial fibrillation (AF)

(upper strip) and ventricular tachycardia (lower strip). AF is characterized by absent P waves and

irregular R-R interval. Ventricular tachycardia is characterized by absent P waves and bizarre-

looking QRS complex with discordant T waves (i.e., in opposite direction to the QRS).
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beating of the heart, with varying pauses between heartbeats and an irregular ven-
tricular rate. This form of arrhythmia is commonly referred to as an irregularly
irregular rhythm. The P waves are absent with a “fibrillatory” isoelectric line due
to the ineffective atrial depolarization. AF leads to ineffective ejection of blood
from the atria to ventricles and can either present as a chronic and asymptomatic
condition or as an acute emergency.

2. Atrial flutter: Atrial Flutter is caused by a localized self-perpetuating loop of electri-
cal activity in the atria. This leads to generation of multiple oddly shaped P waves
with a single subsequent QRS. The odd-shaped P waves are due to an unusual
source of depolarization in the atria, and the shape is often termed “saw tooth” P
waves. Similar to AF, the unusual depolarization leads to ineffective ejection of
blood from the atria to the ventricles.

3. Paroxysmal supraventricular tachycardia: This rhythm is characterized by intermittent epi-
sodes of tachycardia with initiation of depolarization occurring in an abnormal focus in
the upper part of the heart. Unlike AF and flutter, each atrial contraction is followed
by a subsequent ventricular contraction, hence normal QRS complexes. However, the
abnormal focus of initial depolarization manifests as abnormally shaped P waves, an
abnormal PR interval, or an absent P wave.

3.5.1.2 Ventricular arrhythmias

Ventricular arrhythmias refer to rhythm disorders affecting the contraction of the ven-
tricles. The source of the initial depolarization is from the ventricles, rather than a nor-
mally conducted signal through the AV node. Since the ventricles are the main pump
in the heart, such arrhythmias often lead to a dysfunctional ejection of blood from the
heart to the rest of the body. The potential for pump failure, including cardiac arrest,
dictates that all ventricular arrhythmias be treated as an emergency. The hallmark of
ventricular arrhythmias is the prolonged and abnormally shaped QRS complexes. This
occurs due to the abnormal conduction through the thick ventricular musculature.
The following are the two clinically significant ventricular arrhythmias:
1. Ventricular tachycardia: This occurs when a focus in the ventricles generates constant

electrical impulses leading to ventricular contraction at a rate of more than 100
beats per minute. The QRS complexes are prolonged (. 120 ms) and bizarre but
with a consistent shape occurring at a regular rate.

2. Ventricular fibrillation: Ventricular fibrillation ensues when chaotic depolarizations are
generated from the ventricles. The contraction in ventricular fibrillation is erratic and
ineffective, leading to failure of the heart pump. This is reflected in the ECG by hav-
ing prolonged and poorly formed QRS complexes that are inconsistent and shape
and occur at an irregular rate. Ventricular fibrillation typically leads to patient collapse
and cardiac arrest, and it is considered a life-threatening arrhythmia that needs imme-
diate medical intervention.
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3.5.2 Conduction disorders

The electrical conduction system in the heart is finely tuned to facilitate maximum
efficiency of contraction. Any alterations in the conduction system would alter the
sequence of muscle contraction and potentially affecting its function. The normal sig-
nal in the heart travels from the SA node in the right atrium to the AV node followed
by the right and left bundle branches, which finally conduct the signal to the ventricu-
lar wall. This sequence of conduction enables the atria to contract first, followed by
the ventricles. On surface ECG, this translates into every P wave being followed by a
QRS complex at a constant time interval. Accordingly, alterations to this synchrony
will manifest as an abnormal contraction sequence of the heart, often termed heart
blocks. The presentation of blocks can range from being asymptomatic and benign to
total loss of heart-pumping ability and death. As shown in Fig. 3.10 and explained
below, clinically significant heart blocks are usually a manifestation of delayed conduc-
tion either at the AV node or at the subsequent bundle branches in the ventricles:
1. Complete heart block: Complete heart block refers to the state of complete disso-

ciation between atrial and ventricular contractions. This is reflected as a complete
lack of synchrony between P waves and QRS complexes on the ECG. The rate of

Figure 3.10 Clinically important conduction disturbances. The upper ECG strip shows a complete

heart block with complete dyssynchrony between the P waves (black arrows) and the QRS com-

plexes. Atrial rate is higher than the ventricular rate. Bottom strips show the precordial leads of

two different cases with conduction disturbance due to a block at the right or left bundle

branches. P-QRS synchrony is maintained, but QRS duration and morphology are abnormal. ECG,
Electrocardiogram.
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atrial and ventricular contraction will correspondingly differ, with ventricular con-
traction displaying a slower than usual rate, referred to as bradycardia (heart rate
,60 beats/min). Patients with complete heart block are considered high-risk
patients requiring urgent evaluation for an intervention.

2. LBBB: The left bundle branch conducts the signals from the AV node to the left
ventricle. A block in conducting signal in the left bundle branch will lead to delayed
activation of the left ventricle. This will disrupt the activation process in the left ven-
tricle, leading to unusually shaped QRS complex with prolonged duration.

3. RBBB: Similarly, the right bundle branch conducts the signals from the AV node
to the right ventricle. Likewise, disruption in the activation process in the right
ventricle leads to unusually shaped QRS complex with prolonged duration.

3.5.3 Chamber enlargement

The size of the atria and the ventricles is determined by the volume of muscle forming
these chambers. Analogous to any muscle in the body, the size of the chambers can
change due to an increased stress on these muscles. This includes increased resistance
in the blood vessels in the form of hypertension, which increases the workload on the
left ventricle. Similarly, increased pressure in the lungs can stress the right side of the
heart, increasing the size of the right atrium and ventricle. Moreover, dysfunction in
the valves of the heart (the leaflets at the exit of each chamber) can influence the size
of the involved chambers. An increase in the muscular thickness of one of the cham-
bers affects the ECG since the magnitude of electric signals passing through this cham-
ber is increased. Such chamber size enlargement is often secondary to another ongoing
disease, hence, identifying these changes can guide in detecting the primary condition.
The most significant of these conditions is left ventricular hypertrophy (LVH), which
is often caused by a valvular dysfunction or hypertension. In LVH, the increased mag-
nitude of signals in the left ventricle manifests as higher voltage in the ECG leads map-
ping this chamber. This is demonstrated by the increased voltage in the R wave in
leads V5 and V6. Conversely, the leads opposite to the left side of the heart will have
a deeper deflection, hence a deep S wave in V1 and V2 (Fig. 3.11).

3.5.4 Cardiac ischemia or infarction

When blood supply to the heart is not commensurate with its demands, the delivery
of oxygen to the cardiac muscle is diminished. This oxygen debt in the heart muscle is
known as myocardial ischemia. This usually arises due to a sudden blockage of one of
the blood vessels supplying the heart, a condition known as acute coronary syndrome.
Often, the vessel blockage is substantial enough to lead to myocardial cell death,
known as a myocardial infarction (MI). MI is the most common cause of death in the
world, and is a top medical emergency requiring urgent intervention [24].
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An infarcted area alters the electrical impulse as it travels in this affected tissue. This not
only reflects as measurable waveform changes on the ECG but also evolves into localized
patterns in specific leads. Characterization and localization of these lead-specific changes can
help healthcare providers predict the extent of damage to the myocardium, as well as pre-
dict which coronary blood vessel is blocked, leading to the infarction [25].

Indications of the size, site, and severity of ischemia are primarily based on the
magnitude and location of ST-segment deviation. Accurate interpretation of these

Figure 3.11 Left ventricular hypertrophy (LVH). This figure shows the precordial leads associated

with ECG changes of LVH. Note the increased R amplitude in V5 and V6 (facing left ventricle) and

the increased S amplitude in V1 and V2 (opposite to left ventricle). Amplitude reflects the voltage

in microvolts that is directly related to size of ventricular chamber. ECG, Electrocardiogram.
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ECG findings is crucial for clinicians when determining whether to pursue urgent
interventions in the operating room in hope of restoring blood flow. Importantly,
while the treatment of a myocardial ischemia is individualized, it is important to be
aware that the ECG is an indispensable tool to achieve such goal. Angina and MI are
the major clinical diagnoses of diminished blood supply that are primarily facilitated by
ECG reading, and they are explained below.

3.5.4.1 Stable/unstable angina

Angina is the feeling of chest pain or discomfort that develops due to myocardial
ischemia. Various types of angina exist; however, the two primary types of angina are
stable and unstable angina. Stable angina occurs due to an unusual state of exertion by
the patient, such as when going up the stairs or climbing a steep heel. On the other
hand, unstable angina is characterized by the unpredictability of chest pain attacks,
with possible attacks occurring even during rest. Such attacks are typically precipitated
by an abrupt worsening of a coronary vessel obstruction. Although chest pain occurs
during any attack of myocardial ischemia, the diagnosis of an angina is classically used
when indicating that no cardiac tissue death has ensued. An ECG would suggest
angina when ST-segment depression and T wave inversions are observed (Fig. 3.12).

3.5.4.2 Myocardial infarction

The term MI applies when cardiac muscle death occurs. The death of cardiac tissue
leads to leakage of contents from the cardiac cells (Troponin and Creatine Kinase) into
the bloodstream, which can be detected by analyzing blood samples in the lab. Such
infarctions are termed ST-segment elevation infarctions, demonstrating the remarkably
crucial role of an ECG in diagnosing such cases. ST-segment elevations are observed
in the leads corresponding to the area of the heart with underlying tissue damage, as
demonstrated by the following:
1. Anterior infarction: Anterior MIs manifest as ST-segment elevations in precordial

leads V1�V4, suggesting an occlusion in the left anterior descending artery.
2. Lateral infarction: Lateral MIs manifest as ST-segment elevations in precordial leads

V5�V6, and lateral limb leads I and aVL. This occurs due to an occlusion in the
circumflex artery.

3. Inferior infarction: Inferior MIs manifest as ST-segment elevations in inferior limb
leads II, III, and aVF. This occurs due to an occlusion in the right coronary artery.
It is worth noting that these diagnostic categories are not mutually exclusive.

A patient might present with an infarction that is due to multivessel occlusion (e.g.,
anterior and lateral infarction). Moreover, given the vector-based nature of the
12-lead ECG, it is well-documented that ST elevation in one lead might be mirrored
as an ST depression in a geometrically opposite lead. These two challenges make ECG
diagnosis of ischemia and infarction very challenging clinically.
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3.6 Automated ECG interpretation

By now, the reader should be familiar with the basics of electrophysiology, electrocardi-
ography, ECG signal processing, and cardiovascular disease classifications. In this section
we will focus on how ECG interpretation can be automated, including its role in syn-
thesizing diagnostic statements for clinical use.

Computer-aided analysis of the digital 12-lead ECG involves signal processing
and diagnostic classification. After signal acquisition, filtering, and preprocessing,
the 12-lead ECG visual waveform is displayed on a standard paper in landscape
orientation as shown in Fig. 3.13. The ECG leads are presented in 3Ã—4 window

Figure 3.12 ECG patterns associated with cardiac ischemia and infarction. This figure shows three

ECG strips from different cases that demonstrate T wave inversion (upper strip), ST depression

(middle strip), and ST elevation (bottom strip). T wave inversion and ST depression are commonly

associated with ischemia (lack of oxygen supply to the heart), whereas ST elevation is associated

with infarction (muscle death). The latter characteristic is used to detect ST-elevation myocardial

infarction (STEMI), a clinically significant condition that warrants urgent medical intervention. ECG,
Electrocardiogram.
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preview, with each window measuring 2.5 seconds. All windows on a given row
are temporally sequential over 10 seconds, and the windows across columns are
temporally aligned over the same 10-second period. The scaling display on the
x-axis is 40 ms per small square (1Ã—1 mm in size), and on the y-axis is 100 µV
per small square. On the header of the ECG display, global waveform measure-
ments are displayed, including beat-to-beat measures (e.g., heart rate) and the
global ECG interval measurements (e.g., QRS duration, QT interval, R axis, etc.).
More importantly, standard diagnostic statements are also listed on the header of
the ECG display along with the measurement thresholds used in each statement.
An overall interpretation statement is also listed on the header. Most of the diag-
nostic statements listed on the ECG display in commercial interpretation systems
are FDA approved for patient safety and are cleared for clinical use.

Although the 12-lead ECG with automated ECG interpretation is widely used in
clinical practice, there are no uniform criteria for ECG diagnostic statements. Current
clinical practice guidelines suggest 117 primary diagnostic statements in 14 categories
and 27 secondary diagnostic statements in two categories [2]. For the sake of

Figure 3.13 An example of a standard 10-s, 12-lead ECG with automated ECG interpretation. This

12-lead ECG was obtained on a 68-year-old male with chest pain in an emergency department.

The automated ECG interpretation suggests that this is an “Abnormal ECG,” with no rhythm abnor-

malities but with an old heart attack pattern. An over-reading by a cardiologist confirms these

diagnostic statements are accurate but also suggests the abnormal T in precordial leads might be

due to an acute process and warrants further evaluation. ECG, Electrocardiogram.
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simplicity, the most common diagnostic statements with important clinical significance
are summarized in Box 3.1. These statements range from benign findings to alert clini-
cians (e.g., “misplaced leads” - obtain a new ECG) to more serious findings requir-
ing immediate, life-saving medical actions (e.g., “ventricular fibrillation” - evaluate
patient and initiate advanced cardiac life support).

The clinically important diagnostic ECG statements summarized in Box 3.1
generally fit into one of four disease pathologies as previously explained: rhythm
disorders (diagnostic categories 3�7), conduction defects (diagnostic categories
8�9), chamber hypertrophies (diagnostic categories 10�11), and cardiac ischemia
or infarction (diagnostic categories 12�13). For each of these disease categories,
automated ECG interpretation algorithms use discrete measurements obtained dur-
ing signal processing, then map these measurements to rule-based criteria set forth
by established clinical practice guidelines. Box 3.2 summarizes few examples of
these rule-based ECG criteria associated with selected diagnostic statements of clin-
ical importance.

3.7 “Logic” used in automated ECG interpretation systems

Algorithms that automatically interpret the ECG are typically deterministic or rule-
based algorithms [30]. A rule-based algorithm uses a series of “if then else” type logical

BOX 3.1 Summary of clinically important diagnostic statements

Primary diagnostic category Clinically important diagnostic statement
1 Overall interpretation “Normal ECG”; “Abnormal ECG”; “Uninterpretable ECG”

2 Technical conditions “Misplaced precordial electrodes”; “Artifact”; “Poor quality data”

3 Sinus node rhythms “Sinus rhythm”; “Sinus bradycardia”; “Sinus arrhythmia”

4 Supraventricular arrhythmia “Ectopic atrial rhythm”; “Junctional rhythm”

5 Supraventricular tachyarrhythmia “Atrial fibrillation”; “Atrial flutter”; “Supraventricular tachycardia”

6 Ventricular arrhythmia “Ventricular premature complex”; “Idioventricular rhythm”

7 Ventricular tachyarrhythmia “Ventricular tachycardia”; “Ventricular fibrillation”

8 Atrioventricular conduction “AV block, first degree/second degree/third degree”

9 Intraventricular conduction “Left bundle-branch block”; “Right bundle-branch block”

10 Axis and voltage “Right axis deviation”; “Left axis deviation”; “Low voltage”

11 Chamber hypertrophy “Left ventricular hypertrophy”; “Right ventricular hypertrophy”

12 ST segment and T wave “T wave abnormality”; “Prolonged QT interval”

13 Myocardial infarction “Anterior MI”; “Inferior MI”; “Posterior MI”; “Lateral MI”

14 Pacemaker “Atrial paced rhythm”; “Ventricular pacing”

Secondary diagnostic category Clinically important diagnostic statement

1 Suggests... “Acute pericarditis”; “Hyperkalemia”

2 Consider... “Acute ischemia”
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statements that are used to deduce a computerized diagnosis. The rules are normally
knowledge engineered by a computer programmer after considering clinical guidelines
and ECG diagnostic criteria. In a way, the rules represent the known ECG knowledge
base and diagnostic criteria that physicians use when reading an ECG. However, of
course the physician has broader heuristics and knowledge beyond ECG interpretation
which is why the physician is ultimately responsible for diagnostics and not the com-
puter. The physician also knows the patient history, context, and other symptoms that
the patient exhibits. Hence, the algorithm is an adjunct to the physician, not a
replacement.

The question is then what are the rules these computer algorithms reason with?
Each individual rule can be considerably basic and binary, for example, a computer
program might ask if the heart rate is greater than 120 beats per minute, which is
either simply true or false, and depending on whether the rule is true or false, the
algorithm will simply fork or move onto the next rule to be processed. However,

BOX 3.2 Rule-based ECG criteria as recommended by clinical guidelines

Disease

pathology

Rule-based criteria for selected

diagnostic statements

ECG features needed for automated

algorithms
Rhythm

disorders

“Atrial fibrillation”: heart rhythm with no

discernible repeating P waves and

irregular RR interval [26]

Beat-to-beat RR and PR intervals; global

duration of P-QRS-T waves; lead-specific P

wave measurements

Conduction

defects

“Right bundle branch block”: global QRS

duration .120 ms; R0 pattern in V1 or V2;

S duration .40 ms in V6 [3] “Left bundle

branch block”: global QRS

duration. 120 ms; notched or slurred R in

lead I, aVL, V5�V6; ST-T amplitude in

opposite direction to QRS amplitude; and

abnormal QRS axis [3]

Global QRS duration; lead-specific P-QRS-T

measurements; R0 and S0 ; QRS axis

Chamber

hypertrophies

“Left ventricular hypertrophy”: there are

numerous voltage criteria [5], with the

following being the most widely used:

SV11 RV5$ 35 mm [27]; or

SV31 RaVL. 28 mm (men) or .20 mm

(women) [28]

Lead-specific R and S amplitude

Cardiac

ischemia

“(Anterior/lateral/inferior) infarct”: two

contiguous leads with (1) ST amplitude

$ 250 µV (men ,40 years), $ 200 µV

(men $ 40 years), or $ 150 µV (women) in

leads V1 and V2; or $ 100 µV in other

leads; or (2) ST amplitude # 50 µV with or

without T amplitude ,2 100 µV [29]

Lead-specific ST and T amplitude; lead-

specific Q duration
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whilst the rules themselves might be optimized, an algorithm can only reason based
on the information that it is given. For example, the rule will not know if the wave-
form offset was precisely detected and that the ST amplitude was accurately measured.
Hence, regardless of how good the rules are, the old adage of “garbage in, garbage
out” still applies. Hence, it is clear that the algorithm is not just about the rules, since
the preprocessing stage is just as important. This preprocessing stage includes cleaning
the ECG signals (removing baseline wander for example) and extracting the information,
also known as feature extraction. This includes beat detection, which requires techni-
ques from digital signal processing to detect features such as the R peak, QRS onset,
T wave offset, and so on which of course are then used to automatically measure the
QRS interval, cardiac axis, ST-amplitude, rhythm, and so on. The veracity of this
basic information is critical to the accuracy of the ECG algorithm. Fortunately, ECG
printouts typically include the computerized diagnostic statement at the top of the
page along with some of the feature measurements, typically including cardiac axis,
QRS interval, heart rate, and so on (Fig. 3.13). These measurements could be used by
the human reader to validate the computer’s “basic information” that is being used to
drive the algorithm. Of course, the human has certain perceptual skills that a rule-based
algorithm may not have. For example, a human can consider the waveform morphology
of the ECG signals and can rely on human level pattern recognition, that is, System 1
thinking [31], whereas the ECG signals are compressed down into “features” for an algo-
rithm to reason with. As an example, the Glasgow ECG program is a well-known ECG
algorithm that was developed by Prof. Peter Macfarlane and his team [32].

So, what are the limitations of knowledge-driven, human-curated rule-based logic in
automated ECG interpretation systems. Despite the presence of well-established ECG
diagnostic guidelines for most cardiovascular disease pathologies (Box 3.2), there remains
a wide variation in obtaining similar diagnostic classification statements when the same
ECG is interpreted by different computerized analysis systems. Such discrepancy in
obtaining similar diagnostic statements can be attributed to few factors [13]. First, ECG
signal processing follows multiple stages prior to obtaining automated interval and ampli-
tude measurements of P, QRS, and T waves. Despite the availability of recommenda-
tions to standardize ECG processing [1], different manufacturers use different proprietary
signal processing approaches leading to statistical differences in the automated measure-
ments of clinically important, and basic, ECG intervals like RR, PR, QRS, and QT
[33]. The differences in measurements become even more pronounced when the ECG
is abnormal (e.g., nonsinus rhythm), which further limits clinical utility.

A second factor contributing to discrepancy in automated diagnostic statements is the
need to account for waveform morphology (e.g., P shape, QRS pattern, and ST-T slop-
ing) and interlead spatial relationships (e.g., contiguous leads) in certain disease pathologies
like arrhythmias and MI. These computer-aided statements are usually less reproducible
simply because that rule-based systems do not have the visual pattern recognition skills of
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human readers. It has been shown that, using nine different computer interpretation pro-
grams, the overall accuracy of computer-aided ECG diagnosis is B7% lower than that of
cardiologists [34]. Computer-aided diagnostic accuracy was reported to be the lowest in
diagnosing arrhythmias and conduction disorders [35], with nearly 15% of rhythm-related
diagnostic statements requiring re-evaluation by clinicians [36]. It has been also shown that
diagnostic algorithms have wide variability in diagnosing MI, with false positive and false
negative prediction rates ranging from 0% to 42% and 22%2 42%, respectively [37,38].
This wide variability has profound implications to clinical management of patients in acute
cardiac distress. Consequently, due to the overall suboptimal diagnostic accuracy, the
experts’ consensus is that all computer-aided ECG interpretations should be systematically
over-read by experienced clinicians. Yet, it is worth cautioning that incorrect computer-
aided diagnosis would still bias and mislead the clinicians in their ECG interpretation,
potentially reducing the accuracy of both specialists and nonspecialists by 43% and 59%,
respectively [39].

3.8 Machine learning and automated 12-lead ECG analysis

The previous section described the conventional approach to ECG algorithm develop-
ment where the algorithm is based on a collection of logical statements that are in the
form of rules to infer a diagnosis. As aforementioned, these rules are typically derived
from expert knowledge, guidelines, and known diagnostic criteria. Hence, these algo-
rithms can be described as knowledge-driven (deduction) as opposed to being data
driven (induction). Whilst knowledge-driven (or knowledge-engineered) algorithms
were a popular approach in previous decades (e.g., expert systems), there is a well-
known trend towards data-driven algorithms in the form of ML. The phrase “data
driven” simply means that the ML algorithm “self-learns” (without much supervision
from domain/knowledge experts, i.e., cardiology experts) to infer the diagnosis by
deriving its own diagnostic patterns (or even “inducted” rules) after having “seen” a
large dataset of “labeled” ECGs. The term “labeled” here means that each ECG that
the ML algorithm is exposed to has a reliably “labeled” diagnosis that is either based
on a consensus diagnosis from a group of expert cardiologists or that is verified by
gold standard tests (e.g., echocardiogram, blood tests, angiograms, etc.).

In a general sense, a data-driven ML algorithm learns the correlates that link the
ECG features (e.g., QRS width, ST-amplitude, etc.) to the labeled diagnosis.
However, this does run the risk of recognizing confounders and other associations that
are unreliable or un-generalizable. Ultimately, an ML algorithm will only be as good
as the labeled data; for example, if a single junior clinician labels the ECGs that are
used to train an ML algorithm, then the algorithm may make the same diagnostic mis-
takes as the “labeler.” This highlights the importance of using a group of “expert”
clinicians and if possible, labels that are verified by other diagnostic tests.
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This process of data-driven algorithm development using ML is specifically known
as “supervised” ML, since the learning process is driven or “supervised” by existing
labels. Learning algorithms such as neural networks update its learning (hyper-para-
meters or weights) iteratively where the labels are used to supervise and inform the
algorithm if its current prediction is correct or incorrect. This could be akin to chil-
dren learning to recognize cats and dogs where a “learner” initially guesses if the
photo includes a cat or a dog, and the parent corrects the learner when they get this
wrong, forcing the learner to adjust their understanding. Supervised ML is simply a
branch of ML where the algorithm learns using a labeled dataset. Different labels can
be used to train ML models. Although most labeling can focus on diagnostic state-
ments, many other ML algorithms have been trained for noise detection [40], lead
reversal, and misplacement detection [41,42].

The other two branches of ML include learning using an “unlabeled” dataset and
learning using a “semilabeled” dataset (i.e., a mixture of labeled and unlabeled
instances), both of which are known as unsupervised ML and semisupervised ML,
respectively. While supervised ML is the dominant approach for developing predictive
or classification algorithms, unsupervised ML can be useful for discovering patterns or
labels in a dataset.

Supervised ML is used to either predict a number (known as a regression problem)
or to classify cases into a “class” or “category” (known as a classification problem).
Given that ECG interpretation involves categorizing ECG cases into categories (such
as Acute MI, Normal ECG, AF, etc.), automated ECG interpretation is known as a
classification problem. There are many different supervised ML algorithms for doing
classification, including support vector machines (SVMs), artificial neural networks
(ANNs), decision trees (DTs), k-nearest neighbor, regularized logistic regression (LR),
and Naive Bayes (NB) to name but a few. These supervised ML algorithms are trained
using ECG features (e.g., QRS width, P wave, ST amplitude) that characterize each
ECG along with its labels (i.e., acute MI, AF, etc.). Data scientists sometimes combine
different algorithms, an approach known as ensemble learning, often producing even
better results.

Supervised ML algorithms can be trained using 70% of the ECGs in the dataset and
tested on the remaining 30%. However, the training and test split is not standardized and
can be a ratio of 60:40, 70:30, 80:20, or 90:10. This is typically decided by the data sci-
entist. More importantly, rigorous evaluation techniques such as k-fold cross-validation
are typically used on the training set before testing the algorithm on the remaining data.
In this case, the typical approach is to use 10-fold cross-validation, meaning the algorithm
is trained and validated 10 separate times on the training set, with each iteration having a
different subset for validation. The 10-fold cross-validation offers the advantage of attenu-
ating bias, producing results that are more generalizable to the test set.
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When the algorithm has finished its “learning” by identifying sets of features that
seem to correlate with each of the labels, the algorithm is then tested on a blinded
dataset of ECGs to evaluate its performance. After testing, accuracy measures such as
sensitivity and specificity can be used to evaluate the performance of the algorithm,
however, other metrics such as AUC and F1 scores can also be used. AUC and F1
metrics can be used to benchmark algorithmic performance between different ML
algorithms (e.g., SVM, LR, NB, etc.), then choosing the winning algorithm.

This supervised ML technique follows a traditional approach with a standard work-
flow pipeline: ECG preprocessing; feature extraction; feature selection; and ECG clas-
sification. Such supervised ML techniques are referred to as traditional ML approaches
and are usually distinguished from deep learning (DL)-based approaches (to be dis-
cussed below). Thus, the feature extraction process in traditional ML can be the same
process that is used for rule-based algorithms (except this feature extraction is used for
a large number of ECGs to train the algorithm, whereas rule-based algorithms are not
trained but use feature extraction to simply get the features from the ECG being inter-
preted). Data scientists typically use digital signal processing techniques to extract a
large set of ECG features for each ECG. Afterward, they use feature selection and/or
data reduction (e.g., principal component analysis) techniques to select a set of features
(predictors) that seem to have predictive power for classifying the ECGs into the dif-
ferent diseases groups (outcomes). Hence, removing irrelevant features from the data-
set. The selected features are then used with a supervised ML algorithm to learn the
“labels” [43]. Selecting the features this way is known as “handcrafted” feature selec-
tion because the data scientist has assessed the predictive power of each individual fea-
ture and made their own case to include them in the model or to exclude them.
Unfortunately, handcrafted feature extraction and selection when building ML algo-
rithms can be time consuming, especially in the case where the number of ECG fea-
tures is large, and there is discrepancy between the feature selection techniques
regarding the ranking of feature importance [43]. It is of course important to consult a
domain expert (e.g., cardiologist) when selecting features since domain knowledge can
also ensure that data science decisions around feature selection are grounded in science
and are reasonable and generalizable (ensuring that they are not confounders). And whilst
feature selection requires time and effort, this would be minuscule when compared to the
labor required to develop knowledge-engineered rule-based algorithms, since they require
a programmer to manually codify knowledge into a large set of rules. Automated ECG
algorithms based on traditional supervised ML models have been shown to be superior to
automated algorithms based on existing rule-based systems [44].

Whilst traditional ML requires a data scientist to do the feature engineering, DL has
become a widely used technique that automates the feature engineering process by choos-
ing its own features. DL is a subset of ML and is based on ANNs. DL is bioinspired by
the human brain, where activated neurons can connect to other neurons via synapses in a
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large network. DL can be in the form of different types of networks and structures such as
convolutional neural networks, recurrent neural networks, multilayer perceptron, deep
belief networks, and long short-term memory. DL has perhaps become more popular
given that it automates feature extraction and selection (taking one task away from the
data scientist) and is known to outperform traditional supervised ML algorithms.

DL algorithms are also known to improve their accuracy as the training ECG dataset
gets larger, whereas the performance of traditional ML techniques may plateau regardless
of how large the training dataset gets. Hence, in the era of “big” ECG data, DL is likely
to outperform any other approach. However, DL is considered a black box approach as it
is difficult to discern the decision-making logic, whereas the decision-making of a rule-
based algorithm is clear. Hence, DL algorithms are not as “explainable,” “transparent,”
and “traceable” as other algorithms. The process of feature extraction and feature selection
are not transparent to the data scientist, domain expert, or any other end-user. Thus, the
gain of accuracy by using DL is usually at the expense of explainability. However, this
“black-box” limitation might be solved in the future. Computer scientists have proposed
methods to enable DL algorithms to be more explainable and transparent. For example,
techniques can be used to generate an “attention map” from the DL algorithm, which is
one of the proposed methods that can be used to understand what the DL algorithm
“looked” at before making its classification. Another method is to generate a DT that
mimics the DL decision-making process since a DT can be interpreted by users.

Although DL has been used for many healthcare applications for decades, ECG
interpretation using DL needs to be further explored. DL was used for ECG interpre-
tation in 2009 [45]. Since then, DL has become a popular topic in ECG interpretation
according to the accumulative number of published papers in three databases (IEEE,
SCOPUS, and PUBMED) as shown in Fig. 3.14. DL showed promising results in
ECG interpretation to diagnose different heart abnormalities [46]. In this study, DL
was shown to outperform physicians in detecting six abnormalities on the ECG. DL
has also outperformed cardiologists to detect 12 different types of cardiac rhythms
[47,48]. In addition, DL outperformed 53 physicians who work in cardiology

Figure 3.14 Trend in published literature using deep learning techniques for ECG analysis. This

figure shows the accumulative number of published articles (y-axis) in three main research data-

bases between 2012 and 2020 (x-axis). ECG, Electrocardiogram.
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departments (even for those who have more than 12 years of experience) to detect 21
heart rhythm abnormalities [49].

3.9 Basic principles of risk stratification

By now, the reader should be familiar with the role of ECG in cardiovascular disease
classification, as well as the steps involved in automated ECG interpretation, including
the different rule-based, ML and DL algorithms. The remaining sections will focus on
the role of ECG measurements and diagnostic in risk stratification in the clinical set-
tings. Deep understanding of the role of certain ECG metrics and diagnostic state-
ments in stratifying patients to guide therapeutics is especially important.

Evaluating the risk of a condition poses for a patient is a fundamental task for
healthcare providers. This process, known as risk stratification, enables a clinician to
classify patients into populations of high risk or low risk for a certain future event. For
example, an accurate risk-stratifying strategy enables an emergency physician to classify
patients into groups of those needing an immediate intervention in the emergency
room, or those requiring further follow-up with their primary care physician, or those
who are safe to be immediately sent home. The heart’s critical role in the body makes
stratifying for potential acute or chronic cardiovascular complications an essential task
requiring optimal accuracy.

Accurate selection of outcomes when stratifying risk is integral to the process.
Therefore, developing a useful risk stratification tool includes selecting outcomes that are
pertinent to the condition at hand and that are easily measurable. Consequently, it is sen-
sible to select outcomes that are true clinical outcomes rather than surrogate outcomes,
meaning they are truly related to the disease process and are clinically significant.
Moreover, it is practical to select outcomes that are hard outcomes, that is, outcomes that
are concrete, clearly definable, and measurable. Therefore, in cardiovascular disease, while
the evaluation of a patient ultimately aims to improve a patient’s life and avoid morbidity,
mortality remains the most important outcome. Mortality as an endpoint offers the
advantage of being a hard outcome, is easily measurable without bias, and is obviously
clinically significant for both the patient and the clinician. Complying with these charac-
teristics of well-defined endpoints, the following two outcomes are frequently used as the
primary mortality outcomes in cardiovascular disease:
1. Cardiovascular death (CV death): Assignment of a cause of death is often scientific

and adheres to standardized definitions. CV death aims to capture the primary
cause of death, including the disease that initiated the chain of events leading to
death [50]. For instance, when a MI leads to heart failure (a weak heart pump) and
subsequently death, then the primary cause of death would be the MI. However,
the outcome of CV death is often not divided into granular subcategories, such as
death resulting from a MI or heart failure, because of the substantial overlap of
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such events and the ambiguity of the true trigger of the subsequent death [51]. CV
death is then often defined according to (1) certain International Classification of
Disease (ICD) codes relevant to the circulatory system (ICD-9 codes 390 to 459 or
ICD-10 100 to 199), or (2) as death due to fatal or nonfatal MI.

2. Sudden cardiac death (SCD): SCD is defined as (1) unexpected death within
24 hours of having been observed alive and symptom-free or within 1 hour after
the onset of symptoms without any defined cause of death or (2) the presence of
resuscitated or nonresuscitated fatal tachyarrhythmia. Compared to the wide cast-
net of CV death, SCD alternatively aims to zone in on patients who suffer from
a sudden cessation or disruption of normal electrical conduction in the heart.
SCD is mostly triggered by the onset of lethal arrhythmia such as ventricular
fibrillation.
In addition to these endpoints, many studies use all-cause death for risk stratifica-

tion. All-cause death is the most unbiased endpoint among mortality endpoints given
that it is not subject to observer bias. All-cause death is often defined as a documented
death in death certificates, medical records, or national registries, and it is often used as
the main mortality endpoint in clinical studies [50]. However, all-cause death is non-
specific and frequently fails in establishing a mechanistic link between a given risk fac-
tor and its associated excess risk of mortality. In this chapter, we will primarily focus
on CV death and SCD for risk stratification.

3.9.1 The role of ECG in risk stratification

The ECG has proven to be a valuable tool in risk-stratifying patients for mortality out-
comes. This is facilitated by the ECG’s ability to uncover multiple pathologies that are
directly associated with these outcomes. For instance, a variety of arrhythmias are
strongly associated with CV death, including AF [52] and other brief spontaneously
resolving arrhythmias such as a nonsustained ventricular tachycardia [53]. The ECG is
the most important tool in detecting these arrhythmias, particularly during continuous
monitoring. Moreover, the ECG is well suited to reflect how frequent and how fast
the arrhythmia is occurring, both important elements in stratifying risk of mortality
[54]. Similarly, bundle branch blocks are strongly associated with CV death. It is worth
noting that, just like many arrhythmias, the ECG is the gold standard method for
identifying bundle branch blocks [55]. The characteristics the ECG describes, such as
the width of the QRS, provide a vital substrate in risk-stratifying patients with bundle
branch blocks for future mortality [56].

Another important role of the ECG in risk stratification centers on coronary artery
disease. Coronary disease is the leading cause of mortality worldwide. The ECG plays
an integral role in both identifying acute and chronic ischemia and infarction and pro-
viding means for predicting future mortality in these patients. This includes the ECG’s
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ability to identify the severity of the ischemia and the location of the obstructed artery,
both essential elements in predicting CV death [57]. Crucially, the ECG can be the
only prognostic indicator in an otherwise silent acute MI, a significant cause of subse-
quent mortality [58].

More importantly, coronary artery disease is strongly associated with SCD, which
accounts for nearly 80% of all sudden death cases [59]. The ECG is well suited to
detect which patients are more likely to develop SCD post a MI, and hence play an
essential role in primary prevention of short-term events [60]. In the long term, the
interplay between the severity of coronary disease and ejection fraction is an important
predictor for which patients are at risk for SCD. The ECG is especially well suited to
identify which patients have a compromised ejection fraction, severe coronary disease,
and an impaired autonomic nervous system, factors which all interact together, giving
rise to SCD.

Identifying patients who are at higher risk of SCD is vital since numerous cases can
be prevented by using implantable cardioverter-defibrillator (ICD). ICDs are devices
that are implanted into patient’s heart and are programmed to generate shocks that
halt an ongoing fatal arrhythmia. The role of the ECG in risk-stratifying patients for
SCD lies in its distinct ability to detect proarrhythmogenic events and conditions. This
includes simple variations captured on resting standard ECG or during continuous
monitoring, such as the change in heart rate during exercise or mental stress [61].

Arrhythmic events are central to SCD; therefore, it is natural that arrhythmias
detected by an ECG provide value in risk-stratifying patients. This includes events
such as transient ventricular tachycardia or as simple as single extra beats originating
from the ventricles, known as ventricular ectopy [61]. Moreover, the ECG is the cor-
nerstone in diagnosing inherited arrhythmia syndromes, including Brugada syndrome
and Long QT syndrome, conditions that often lead to SCD.

Structural changes that are often diagnosed with routine ECG can lead often to
arrhythmia and SCD. This includes conduction defects in the heart such as left bundle
branch block and chamber enlargement such as LVH. Both conditions are strongly
associated with SCD, and the ability of the ECG to discern the progress of these con-
ditions is vital in risk-stratifying patients.

3.10 ECG-derived markers for risk stratification

The 12-lead ECG constitutes a simple and readily available tool not only to diagnose
various cardiovascular pathologies but also to stratify risk of adverse events in the gen-
eral population and in those with different comorbidities. This ability to stratify
patients into categories of risk has important clinical implications. It can help clinicians
identify patients who might need more aggressive therapies or closer follow up. As
explained in this chapter, the ECG follows a deterministic nature, with each waveform
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morphology and characteristic resembling a physiological signature in the human
body. Distortion in such characteristics does not come in one size fits all, but rather
different attributes of this distortion in the signal might suggest different pathological
mechanisms involved. For instance, a prolongation in the QTc interval can indicate
increased arterial stiffness and systemic vascular resistance [62], not merely longer ven-
tricular activation time, which could explain the repeatedly observed correlation
between this marker and CV death. In this section, we will review the ECG-derived
risk markers most commonly reported in the literature. These ECG markers can be
classified in one of four broad categories: markers associated with conduction distur-
bances, markers associated with structural changes, markers associated with repolariza-
tion abnormalities, and markers associated with distortions in heart rhythm regulation.

3.10.1 ECG risk markers based on conduction disturbances

The most commonly used ECG risk marker associated with conduction disturbances is
the QRS duration. A normal QRS duration is # 110 ms in adults older than 16 years
of age [3]. A wider QRS duration indicates an abnormal propagation of depolarization
impulse originating from the atria and traveling down the ventricles. In adults, an
abnormal and prolonged depolarization of QRS $ 120 ms usually follows a morphol-
ogy of either a right or left bundle branch block. The latter is prevalent in nearly half
of patients with heart failure and is associated with more advanced myocardial disease,
diminished left ventricular function, worse prognosis, and a higher risk of mortality
compared with narrow QRS complex [63].

QRS duration has been an important ECG risk marker in evaluating risk and
guiding treatment decisions in patients with heart failure, namely, selecting candi-
dates for cardiac resynchronization therapy (CRT). A meta-analysis of five random-
ized clinical trials (pooled sample size5 5813) demonstrated that CRT has been
most effective in reducing adverse events in heart failure patients with baseline QRS
duration $ 150 ms [64]. However, given that QRS narrowing after CRT does not
necessarily correlate with hemodynamic improvement [63], as well as the various eti-
ologies involved in altering the ventricular activation cascade, it has been suggested
that QRS morphology, not merely QRS widening, is an important predictor in risk
stratification [65]. This has been demonstrated in a subsequent study that showed
measurable reduction in mortality after CRT in heart failure patients with QRS
duration $ 150 ms that was specifically observed in those with left bundle branch
pattern [66].

Another important ECG risk marker associated with conduction disturbances is the
QT interval. The QT interval quantifies the global ventricular depolarization and
repolarization time, making it vulnerable to many intrinsic and extrinsic etiologies that
can alter the cardiac cycle. A prolonged QT interval on the standard 12-lead ECG has
been extensively studied as an established risk factor for SCD, namely, a potentially
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fatal ventricular tachyarrhythmia called Torsade de Pointes [67]. A prolonged QT
interval has not been only shown to predict risk of CV death in clinical populations,
like type 2 diabetes [68], but also to predict risk of SCD in the general population.
Despite lack of consistency in earlier studies regarding the prognostic value of QT
interval in individuals with no preexisting comorbidities [69], a meta-analysis that
included 16 prospective cohorts and seven case�control studies (pooled sample size
.120,000) has shown that a 50 ms increase in QT interval was associated with a rela-
tive risk of 1.29 (1.15�1.46) for CV death and 1.24 (0.97�1.60) for SCD [70].

As an established ECG risk marker, perhaps the biggest clinical significance of the
QT interval lies in its role in monitoring long QT syndrome that is acquired due to
therapeutic drugs [71]. Many drugs interact with cellular ion channels that regulate
ventricular action potential, especially the outward potassium channels responsible for
late repolarization potentials. The latter constitute a vulnerable proarrhythmic window
that can initiate fatal ventricular arrhythmias. In the right context, a drug that alters
these channels (referred to as QT prolonging drug) can lead to SCD. Thus, the FDA
requires pharmaceutical companies to evaluate drugs under development for any
undesirable QT prolongation effects [72].

Despite the seemingly easy computation of the QT interval on the ECG, the high
stakes make the ECG processing required for accurate computation a daunting task. The
difficulty lies in two challenges. The first challenge is the precise determination of T
wave offset, which largely depends on T wave morphology. Given the intra- and inter-
individual variabilities, it has been shown that automated QT measurements can be lon-
ger or shorter compared to manual measurements by trained human annotators [73],
warranting computer-assisted validation of QT interval in clinical practice. The second
challenge is correcting QT interval for beat-to-beat variability in the heart rate. Although
many manufacturers correct the QT interval using the simple Bazett’s formula (i.e., QT
interval divided by the square root of proceeding RR interval), different correction for-
mulas have been shown to either overcorrect or undercorrect the QT interval at different
heart rates, warranting further caution in QT interval interpretation [74].

3.10.2 ECG risk markers based on structural changes

Many of the previously reported pathologies, including chamber hypertrophy and conduc-
tion defects, are structural in nature and have been shown to increase risk of CV death,
including in healthy individuals independent of traditional risk factors [75]. In terms of
ECG risk markers, fragmentation of the QRS complex (Fig. 3.15), a sign of myocardial
scarring and remodeling, has been shown as a strong prognostic marker, especially in those
with acute MI. In this population, the presence of fragmented QRS on admission ECG
was found to be predictive of mortality, adverse events, deterioration of cardiac function,
and presence of multivessel disease [76]. Fragmented QRS has been also shown to predict
reperfusion failure and in-hospital CV death in ST-elevation MI [77].
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Another commonly reported ECG marker associated with structural changes is car-
diac axis deviation. The mean QRS and T axes project between 230 and 190
degrees in the frontal plane [3]. Structural, and repolarization, changes in the ventricles
would distort the projection of QRS axis or T axis (or both). Isolated left QRS axis
deviation, for example, is associated with altered cardiac function and has been shown
to predict CV death, even in healthy asymptomatic individuals [75]. These results
have not been consistent in literature though [78]. However, a more interesting con-
cept is the relative relationship between the QRS axis and the T axis, referred to as
the QRS-T angle (Fig. 3.16). The QRS-T angle, measured in the frontal or spatial
planes, resembles the difference in mean vectors of depolarization and repolarization,
and has been consistently described as a strong predictor of both CV death and SCD
[79]. A recent meta-analysis of 22 studies (pooled sample size 164,171) has shown that
a wide QRS-T angle was associated with 71% excess relative risk of mortality in clini-
cal populations as well as in the general population [80]. This marker is explained in
further detail under repolarization abnormalities below.

3.10.3 ECG risk markers based on repolarization abnormalities

The repolarization signal on the ECG, or the ST-T waveform, has been extensively
studied in the medical literature. It contains a significant amount of prognostic infor-
mation that play important role in risk stratification [6]. Various pathological processes

Figure 3.15 QRS fragmentation. This figure shows an evidenced QRS fragmentation in the inferior

leads (red arrows) of a 48-year-old male evaluated for chest pain.
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can alter the repolarization signal, including cardiac ischemia and MI, electrolytes
imbalance, chamber hypertrophy and ventricular remodeling, inflammation and oxida-
tive stress, and other systemic and genetic disorders. These varying etiologies make
many repolarization abnormalities nonspecific in nature, yet the presence of a repolari-
zation abnormality, even in the absence of an obvious cause, has been linked to
increased risk of adverse events.

The role of repolarization characteristics in risk stratification has been demonstrated
in a comprehensive meta-analysis that included 106 observational studies with a pooled
sample size of nearly 350,000 individuals from both the general population and cardiac
and noncardiac populations [7]. This meta-analysis examined the association between
CV death and SCD with repolarization abnormalities clustered in eight categories: T
wave duration, T amplitude, isolated T inversion, nonspecific ST-T changes, mean T

Figure 3.16 The QRS-T angle. This figure shows the angle between the QRS axis and the T axis in

the frontal plane. The left panel shows a normal averaged beat with the corresponding projections

of the QRS and T axes in the normal range or 230 to 190 degrees, with a frontal QRS-T angle of

B30 degrees. The right panel shows an abnormal averaged beat with a distorted projection of car-

diac axes, resulting in a wider frontal QRS-T angle of B90 degrees. Created using ECGsim v3.0 Âr
Peacs 2010�2014.
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axis, QRS-T angle, T loop morphology, and interlead heterogeneity of T wave. The
study showed a consistent increase in risk of SCD (hazard ratio 1.9�4.1) and CV
death (hazard ratio 1.6�2.7), with metrics of QRS-T angle showing the strongest and
most consistent association with SCD (Fig. 3.17). These findings are intriguing and
demonstrate that vector loop criteria (or the equivalent information deduced from
simultaneous leads) are sensitive to heterogeneity in repolarization and can be used to
assess for arrhythmogenicity in those most vulnerable to sudden death.

An additional ECG risk marker associated with repolarization abnormalities is
Tpeak2Tend (i.e., the interval from the peak to the end of the T wave). Tpeak2Tend

interval represents a vulnerable window of late repolarization potentials across the
myocardium, and Tpeak2Tend prolongation suggests transmural dispersion of ventric-
ular repolarization. This interval has gained tremendous attention in recent years as a
useful risk stratification tool for predicting arrhythmic death in various clinical popula-
tions. A recent meta-analysis of 33 observational studies with pooled sample of more
than 150,000 patients showed that a mean Tpeak2Tend interval .100 ms was associ-
ated with significant excess odds of ventricular tachyarrhythmia and SCD of 10% and
27%, respectively [82]. This risk was consistent across various disease groups and in the
general population. Given that Tpeak2Tend interval would depend on QT interval
and its heart rate dependency, some studies examined the arrhythmogenicity of the
relative ratio between Tpeak2Tend interval and QT interval. A higher ratio would
then, theoretically, represents larger transmural dispersion of ventricular repolarization
independent of QTc prolongation. A recent meta-analysis demonstrated that a higher
Tpeak2Tend/QT ratio is associated with approximately threefold higher risk of SCD
after acute MI [83], which has important implications to preventive strategies in clini-
cal practice.

Figure 3.17 Risk stratification using the QRS-T angle. These forest plots synthesize data from pub-

lished articles that examined the association between widened QRS-T angle and SCD (left panel)

and cardiovascular death (right panel). The risk is reported as risk ratio (RR). Adapted from Al-Zaiti
SS. The prognostic value of ventricular repolarization. Ann Arbor, MI, USA: ProQuest LLC; 2013 [81].
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Another ECG risk marker of repolarization abnormalities that gained significant attention
in the medical literature is T wave alternans (TWA). TWA reflects excessive beat-to-beat
variability and fluctuations in T wave beyond that attributed to noise and artifact in the
ECG signal. Excessive fluctuation (or higher TWA) is associated with larger dispersion of
ventricular repolarization and, hence, increased risk of arrhythmogenicity and SCD [84].
A meta-analysis of 19 studies with pooled sample size of around 2600 patients from a wide
range of populations has shown that increased TWA (µV) was associated with more than
threefold excess relative risk of SCD [85]. However, this excess risk was not consistent
among the different populations studied, with the greatest prognostic value observed in
patients with chronic heart failure. A more recent meta-analysis demonstrated that the pres-
ence of TWA in patients with cardiomyopathy was associated with more than sixfold excess
hazard risk of developing subsequent life-threatening ventricular arrhythmias [86]. Finally, it
is worth noting that TWA is usually computed on longer ECG recordings (e.g., Holter
monitors) to allow higher precision in the statistical estimation of beat-to-beat variability in
the T wave. Yet, some recent reports suggest that TWA measured from a standard 10-
second 12-lead ECG can still provide important prognostic information in patients with
acute MI [87].

3.10.4 ECG risk markers based on distortion in heart rhythm regulation

Although heartbeats are intrinsically initiated in the heart, the oscillations in the intervals
between these consecutive heartbeats are regulated by the autonomic nervous system.
Through this autonomic control of heart rate regulation, there is now a well-established
link between autonomous nervous system and CV death. Resting heart rate on the stan-
dard ECG has been specifically shown as a strong prognostic marker. A meta-analysis of
45 observational studies demonstrated that an increment of 10 beats/min in resting heart
rate is associated with 12% excess relative risk of sudden death in those with preexisting
cardiovascular disease [88].

A more intriguing concept to estimate cardiovascular burden is based on the beat-
to-beat oscillations of the RR interval (or the consecutive instantaneous heart rates),
which is conventionally described as heart rate variability (HRV) [89]. From a mecha-
nistic standpoint, HRV resembles an adaptive change in heart rate by the sympathetic
and parasympathetic nervous systems to buffer blood pressure. Hence, a diminished
HRV is thought to suggest hemodynamic dysfunction, explaining its long-known
association with mortality after MI [90]. A meta-analysis of eight observational studies
with pooled sample size .20,000 patients showed that low HRV is associated with
32%�45% increased risk of CV death. Consistent results were observed in a more
recent meta-analysis that included 28 cohort studies with pooled sample size of .3000
patients from various clinical populations. In this analysis, reduced HRV was associated
with B45% increased risk of CV death [91]. Both meta-analyses evaluated the
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association between HRV and total CV death, but not specifically against SCD. A
recent study in patients with chronic heart failure suggested that, using competing risk
analysis, reduced HRV might be preferentially associated with nonsudden CV death
rather than sudden arrhythmic death [92].

In terms of SCD prediction, attenuated recovery of beat-to-beat oscillations after a
premature ectopic beat, a marker of autonomic dysfunction and remodeling that is
usually referred to as heart rate turbulence (HRT), was suggested as a powerful predic-
tor of fatal ventricular tachyarrhythmia in various cardiac populations [93]. In a meta-
analysis of 45 studies examining the association between SCD and various ECG risk
markers described in this section, TWA, but not HRV and HRT, was significantly
associated with SCD. However, data on HRT and HRV in this analysis were pooled
from only four studies with a pooled sample size ,600 patients [94]. In a more recent
meta-analysis focusing on HRT and pooling data from 15 studies (nB11,500), abnor-
mal HRT was a predictive marker for SCD in heart failure and postacute MI patients
(relative risk B2.5) [95]. This HRT predictive power of SCD increased significantly
when this marker was combined with TWA (relative risk B4.2), making both ECG
markers clinically important in stratifying risk postacute MI.

3.11 Challenges and opportunities

The computer might misinterpret the ECG due to different ECG recording problems
such as lead misplacement, lead reversals, and noise and artifact in the signal. These
“digital” mistakes could mislead the human reader resulting in a misdiagnosis.
Automation bias is when the human is biased or anchored to the diagnosis suggested
by the computer, even when the computer is incorrect or misleading. Automation
bias is a challenge in the application of automated ECG interpretation as the computer
diagnoses has an influence on the physician’s diagnoses, especially, on less expert inter-
preters [39]. There is an opportunity to improve and calibrate the trust between the
human and the computer. The algorithm needs to be more transparent by providing
uncertainty or probability surrounding each prediction [96], or at least its decision
logic could be available and metrics could inform the human of how accurate the
algorithm is for the respective disease groups.

ML adoption in healthcare is particularly challenging as some ML techniques lack
transparency and explainability [97]. Physicians need to understand why and how an
ML algorithm made a decision. As aforementioned, data scientists have suggested dif-
ferent methods such as generating attention maps for DL algorithms to show how the
final decision was made (or at least what the algorithm “looked at” just before it made
a decision). Physicians might also need to understand how ML algorithms generally
work. For example, if healthcare systems become more ML reliant, medical schools
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will have more responsibilities to prepare future physicians for ML-enhanced health-
care systems.

There are also opportunities to improve ECG interpretation as we move towards a
paperless healthcare system where ECGs are displayed on digital touchscreens. For
example, the ECG can be augmented by complementary visualizations and interactive
computing [98]. Interactive ECG interpretation software has been already prototyped
as a proof of concept [99]. Such software guides the user through the ECG interpreta-
tion process and presents a number of possible diagnoses in a ranked order as part of
the final screen. The user can also interrogate the computerized diagnoses by exploring
its logic and diagnostic criteria by simply interacting with the user interface.

Finally, whilst standardizing the industry to use a standard algorithm is unlikely,
standardizing the outputs of the algorithms should be imperative. A scientific statement
list was recommended and approved by the “International Society for Computerized
Electrocardiology” that can be used to standardize the outputs of computerized ECG
interpretations [2]. As previously mentioned, this statement list consists of diagnostic
terms that are used for ECG interpretation. It includes four types of statements: (1)
primary statements, (2) secondary statements, (3) modifiers statements, and (4) compar-
ison statements. Standardizing computerized ECG statements is important to ensure
that clinicians and machines use consistent nomenclature and diagnostic descriptions
when using different ECG machines in different hospitals.
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CHAPTER 4

Extracting heterogeneous vessels
in X-ray coronary angiography via
machine learning

Binjie Qin1, Mingxin Jin1 and Song Ding2
1Biomedical Engineering School, Shanghai Jiao Tong University, Shanghai, China
2Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

4.1 Introduction

Cardiovascular disease remains the leading cause of death in the world. Percutaneous
coronary intervention with the guidance of X-ray coronary angiography (XCA) has
been routinely applied into the clinic since XCA is an imaging modality capable of
observing internal structures and functions with superior spatiotemporal resolution.
Apart from interventional guidance, XCA is assumed to be an important reference for
better detection and treatment of impaired myocardial perfusion. Current XCA-
guided coronary artery revascularization via stent implantation solely reconstructs the
perfusion of main epicardial arteries. However, whether this artery revascularization
could improve the distal microcirculation and accordingly lead to desired therapeutic
effect on the acute myocardial ischemic heart diseases is not easily evaluated in preop-
erative and postoperative assessment. This is because the distal microcirculation on the
most important parts of the coronary tree is poorly assessed by traditional XCA analy-
sis. To solve this challenging problem, this chapter introduces machine-learning-based
XCA analysis methods to extract and visualize the heterogeneous XCA vessels at
pixel -level resolution.

Although XCA images are widely used in the clinic, the visibility of vessels (espe-
cially distal vessels) in XCA images is very poor due to complex spatiotemporal pat-
terns of disturbances with the following reasons. XCA represents complex 2D/3D
(2D1 time) low-contrast structures of contrast-filled vessels by 2D projection of low
dose X-ray imaging, which is badly overlapped by various background structures (e.g.,
catheters, bones, diaphragms, and lungs) and be simultaneously degraded by tissue-
dependent noises and different motion patterns (i.e., respiratory and cardiac motions,
as well as other tissue deformations during intervention). Furthermore, due to the bad
effect of fastly evanesced contrast agents that are rapidly diffused inside the vessel net-
works, XCA vessels have fast change of inhomogeneous intensities that are disturbed
with different vessel-like noisy structures and motion patterns.
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Recently, extracting contrast-filled vessels from XCA data has gradually attracted atten-
tion and achieved some developments along with some advancements in medical imaging
and machine learning [1]. Specifically, robust subspace learning [2] via decomposition into
low-rank plus sparse matrices [3] has proven to effectively separate moving objects from
the background. Based on the fact that XCA sequence can be modeled as a sum of low-
rank background structures and sparsely distributed foreground contrast-filled vessels,
robust principal component analysis (RPCA) [4�8] is effectively exploited to extract the
moving contrast agents of vessel networks from the noisy complex backgrounds.
However, various RPCA-based methods [5�11] still cannot perfectly extract the contrast-
filled vessels from the dynamic and complex backgrounds that have nonlocally coupled
properties of low rankness, motion patterns, and vessel-like noisy artifacts.

With the popularity of data-driven deep learning in medical imaging including car-
diac image segmentation [12], recent patch-based [13,14] or image-based [15,16] deep
learning works have designed convolutional neural networks (CNN) [13,17] and
encoder-decoder architectures [14�16,18] to segment entire vessel networks from the
XCA sequences. By exploring various prior knowledges with image enhancement
[13,16], attention mechanism [15], and transfer learning strategy [16,17], these deep
learning-based methods have indeed improved the vessel segmentation performances.
But there are still challenges or limitations in the noisy annotated datasets [19,20] and
class imbalance problems [15].

By embracing the challenge in highlighting the minority class of foreground vessels
from the majority class of complex backgrounds in XCA, we were inspired to enjoy the
advantage of having taken the opposite tack by masking the initially segmented vessels as
missing entries of backgrounds, such that our recently published work [21] completed the
whole backgrounds of XCA via tensor completion of background layer and then sub-
tracted the completed background layer from whole XCA sequence to well recover the
heterogeneous vessels’ shape and intensity. This chapter provides an overview of these
related works in Section 4.2, and introduces our recent machine learning-based works on
the RPCA-based vessel extraction in Section 4.3, encoder�decoder-based deep vessel seg-
mentation networks with XCA-dedicated architecture design in Section 4.4, and hetero-
geneous vessel recovery with tensor completion of background layer in Section 4.5. The
final discussion and conclusion are given in Section 4.6.

4.2 Related works

Most blood vessel extraction or vessel segmentation methodologies were reviewed in
the papers [22,23] and recently updated in the works [24�27]. These review papers
have mostly focused on various medical imaging modalities such as magnetic reso-
nance angiography, computed-tomography angiography but rarely on XCA.
Currently, there are few works dealing with vessel extraction for XCA, except for the
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review [28] on reconstruction of high-contrast coronary arteries from X-ray angiography
by focusing on the theoretical features in model-based tomographic reconstruction of cor-
onary arteries. Generally, XCA vessel extraction works can be classified as three types of
methodologies. First, earlier works extract blood vessels via digital subtraction angiography
(DSA) that subtracts a precontrast mask image from later contrast images to clearly visualize
the contrast-enhanced blood vessels and remove the interfering backgrounds. However,
this simple technique has difficulty in handling vessels with a lot of motion artifacts since
the vessels’ surrounding backgrounds always have local tissue motions, noisy intensity var-
iations, and interventional changes during DSA imaging. To reduce the motion artifact,
image registration method is required to match the locally deformed mask images to the
live images for minimizing their dissimilarity. Coupling with RPCA-based vessel enhance-
ment method, the authors in the work [29] have generated a vascular roadmap that
enables visualization of an entire blood vessel by combining multiple enhanced images
with image registration. However, the registration-based vessel extraction methods have
an unsolved challenging problem of nonrigid image registration with local large deforma-
tions and noncorresponding outlier features [30,31], therefore they cannot ensure the effi-
ciency in reducing the sensitivity to the outlier features and motion artifacts of XCA
imaging with the locally deformed backgrounds.

Second, most XCA vessel extraction methods generally belong to the machine
learning-based algorithms by combining various model-based methods with various
vessel filtering techniques including nonlinear and nonlocal filtering methods
[24�27,32,33]. These integrated vessel extraction approaches usually involve two
steps: a filtering step for enhancing and extracting vessel-like features and a mode-
based classification step for highlighting the featured vessel pixels from the back-
grounds. After the XCA images were denoised and enhanced, the model-based
methods usually have highlighted the target vessels for further vessel refinements by
formulating it as an energy optimization problem [1], which have included motion
layer separation such as low-rank plus sparse decomposition modeling [4] (see
Section 4.3), deformable models such as active contour [34], graph-based modeling
[35], minimal path optimization [36�38], and tube-like or tree-like structure tracking
model [39]. Among these model-based methods, the active contour models with level
set evolution are developed and classified into region-based and edge-based models
with various improvements for image segmentation. It has recently been proven that
the hybrid variants combining both region and edge information [34] can improve the
vessel segmentation performance. But these methods are usually sensitive to model ini-
tialization and have limited performances in extracting the real vessels with intensity
inhomogeneity as well as varied vessel shapes and topologies from many vessel-like
blurry edges in complex backgrounds. Furthermore, the tube-like structure tracking
models [36�38] have attracted some research attentions recently. However, due to
the low-contrast intensity inhomogeneities, complex noise distributions, background
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overlaps, pathology and surgical changes, vessel tracking methods always result in early
termination of vessel evolution when the matching between the vessel model itself
and the image data in the current model neighborhood is not easily computed by
both the deterministic and statistical tracking approaches.

For the filtering methods, more advanced vessel filtering methods are proposed to lift
original low-dimensional image data to a high-dimensional space exploring the lifted data’s
multidimensional and multiscale information about the local and nonlocal curvilinear fea-
tures such as orientations, phases, intensity profiles, and high-level topological and geomet-
ric features [28,33]. The nonlocal similarity-based filtering [40,41] has proven to perform
well in aggregating similar patches for X-ray image denoising. In addition, new nonlocal
computation schemes including the multiscale superpixels handling different vessel scales
[42], nonlocal weighted fuzzy energy term in active contour models [43], and the frac-
tional calculus [44,45] enabling long-range interaction have proven to well enhance the
edge- and ridge-like features from the noisy backgrounds in medical imaging.
Furthermore, inspired by the phase congruency model [46] having robustness to noise and
being invariant to changes in contrast, some image enhancement methods have exploited
the phase congruency based feature indicator called phase symmetry and phase asymmetry
[44,47,48] to detect edge- and ridge-like features such as 2D/3D vessels. The high-level
vessel feature representations have benefited subsequent classification of enhanced vessel
features from complex and dynamic backgrounds. However, this vessel-feature enhance-
ment filtering simultaneously enhances the background structures with similar vessel-like
features to introduce more difficulty in subsequent vessel classification or vessel tracking.
The vessel feature representations are also very important in the model-based vessel track-
ing methods after model initialization, where the current model’s neighboring topological
and geometric features are exploited to steer the evolution of model-based vessel tracking.

Third, as medical imaging data and computer power become increasingly available
in our life, various data-driven deep learning network architectures have learned the
end-to-end mapping between training images and their corresponding manually anno-
tated binary ground truth maps for medical image segmentation [49,50]. By assigning
a vessel or nonvessel label to each pixel, typical supervised vessel segmentation gener-
ally consists of training and testing. In the training stage, the method simultaneously
learns the features and classification parameters for classifying the pixels from known
labels (ground truth). After that, in test stage, the trained classifier is examined on pre-
viously unseen pixels. Generally, most current deep learning-based vessel segmentation
methods are built from the encoder�decoder architectures including fully convolu-
tional networks and U-Net [15,16,18], which learn to map input data of arbitrary sizes
into a high-level feature representation with contextual information by an encoding
function and then predict the output with the same size from the feature representa-
tion and recover the pixel-wise spatial detail back to the original domain. On the one
hand, fusing prior knowledge about target vessels into neural network architecture
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such as channel attention and loss function [15], as well as preprocessing and postpro-
cessing modules (such as conditional random field module) will certainly improve the
vessel segmentation performance. On the other hand, incorporating graphical models
[14] and classical model-based machine learning such as active contour models [50]
into multiscale data-driven deep neural networks will enable a full exploration of con-
textual information about geometrical and topological features to effectively refine the
vessel segmentation. Unfortunately, most existing vessel segmentation methods are
solely developed for the purpose of vessel shape recovery. To the best of our knowl-
edge, automated vessel extraction with inhomogeneous intensity recovery from XCA
images is currently an unexplored task. This chapter therefore for the first time pre-
sents the complete procedures for heterogeneous vessel extraction with intensity
recovery. Fig. 4.1 displays the whole procedure of this chapter: we first present motion
coherency regularized RPCA called MCR-RPCA (https://github.com/Binjie-Qin/
MCR-RPCA) [5] for extracting foreground vessels from the noisy backgrounds in
Section 4.3. Our sequential vessel segmentation network called SVS-net [15] is pre-
sented in Section 4.4 to demonstrate its segmentation of entire XCA vessel networks.
In Section 4.5, we introduce the work of vessel region background completion with
t-TNN tensor completion (VRBC-t-TNN) for accurately recovering the heteroge-
neous vessel network’s shapes and intensities. This heterogeneous-vessel extraction is
ready for further microcirculation analysis in the clinic.

4.3 MCR-RPCA: motion coherency regularized RPCA for vessel extraction

4.3.1 Motivation and problems

We viewed the XCA images as high dimensional video frames that have moving con-
trast agents continuously flowing inside vascular networks, which are distributed and
overlapped within the complex backgrounds and artifacts, resulting in a big challenge
for XCA analysis [5]. Fortunately, we have observed that XCA data have two specific
structural characteristics, for example, the sparsity of moving contrast agent, and the
similarity of background tissue structures. Then we naturally asked ourselves the ques-
tion: How to simultaneously leverage the sparsity of foreground contrast agents and
the similarity of the sequential backgrounds? Low-rank plus sparse modeling [2] is an
effective tool to detect sparse outliers from the observed background images that are
approximated with low rankness. Specifically, RPCA has been proposed in the classic
work of Candès et al. [3] by decomposing the whole video data into low-rank plus
sparse matrices with a convex optimization problem. Thereafter various RPCA models
are exploited to outperform the state-of-the-art algorithms in many applications [4].

To directly extract the contrast-filled blood flow in vessel trajectories, the spatio-
temporal sparseness and consistency of vessel trajectories within RPCA framework
have been exploited in our work MCR-RPCA [5]. Specifically, based on the sparse
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and low-rank modeling of foreground/background in XCA imaging, MCR-RPCA
used a statistically structured RPCA first to identify all candidate foreground vessels.
Then, we imposed total variation minimization on the foreground vessel trajectories
in modeling the spatiotemporal contiguity and smoothness within RPCA modeling to
eliminate the backgrounds remained in the candidates.

4.3.2 Candidate contrast-filled vessel detection via statistically
structured MoG-RPCA

Observing that the candidate foreground vessel regions are sparsely clustered and corre-
lated within curvilinear structures, we introduced structured sparsity constraint in RPCA

Figure 4.1 The whole procedure of extracting heterogeneous vessels in XCA for microcirculation

analysis. (1) The MCR-RPCA directly separated the heterogeneous foreground vessels from the

backgrounds. (2) The deep network SVS-net segmented the vessel masks from the sequential XCA

images. (3) The VRBC-t-TNN method was used to complete the background regions of vessel masks

for subsequently subtracting the completed background layers from the overall XCA data to

recover the heterogeneous vessel network’s shapes and intensities. XCA, X-ray coronary angiogra-

phy; MCR-RPCA, motion coherency regularized RPCA.
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for extracting all candidate contrast-filled vessels. However, the real structural pattern in
foreground regions is full of the overlapping structures of vessels and other tissues via 2D
X-ray projection. To sparsely regularized the complex contrast-filled vessels in the sparse
matrix S, we associated the matrix S with noisy disturbances to model the moving con-
trast agents as a mixture of statistical structures and complex noise. Specifically, we applied
mixture of Gaussian (MoG) model to statistically construct MoG-based RPCA [51] for
separating the candidate contrast-filled vessels from the complex backgrounds. In fact, this
MoG-RPCA has proven to achieve high detection rate of foreground moving object in
some rigorous experimental evaluations using both synthetic and real videos [52].

Assuming D5L1S where D;L;SAℝ
m3 n are the original XCA sequence, low-

rank backgrounds, and sparsely distributed vessels, respectively, we set each sij in sparse
matrix S with the following MoG distribution:
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where zij is associated with sij to have a 1-of-K indicator vector
zijkA 0; 1f g;

PK
k51 zijk5 1. π5 π1; . . .πKð Þ is a mixing coefficient vector with

πkA 0; 1f g representing the existence probability of the kth Gaussian component
having

PK
k51 πk 5 1. µ5 µ1; . . .;µK

� 	

and τ5 τ1; . . .; τKð Þ with µk and τk being the
mean and precision (inverse variances) of the k-th Gaussian component, respectively.
Here Z is an m3 n3K array with the ði; j; kÞth element denoted by zijk to facilitate
the following description.

The Gaussian-Gamma distribution was used to model the parameters µk and τk
with the Dirichlet distribution modeling the mixing coefficient π

p µk; τk
� 	

5N µk µ0k; β
21
0 τ21

k

�

�

	

UGam τk α0;χ0

�

�

	

p πð Þ5Dir π η0
�

�

	���

ð4:2Þ

where µ0k is the mean of the kthGaussian component, Gam Uð Þ is the Gamma distribu-
tion with hyperparameters α0, β0, and χ0 being set to be small deterministic value
(e.g., 1025) to obtain broad hyperpriors. Dir π η0

�

�

	�

denotes the Dirichlet distribution
parameterized by η05 η01; . . .; η0K

� 	

.
For low-rank background modeling in MoG-RPCA, the LAℝ

m3 n with rank
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m3R and VAℝ
n3R with R. l:

L5UVT
5

XR

r51
u
Urv

T
Ur ð4:3Þ

where u
Ur(vUr ) is the rth column of U(V). The low-rank nature of L is to achieve col-
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where I denotes identity matrix. The conjugate prior on each precision variable is

p γr
� 	

5Gam
�

γr ja0; b0
	

~ γr
a021exp 2b0γr

� 	

ð4:5Þ

where a0 and b0 are treated as small deterministic parameters to obtain broad hyperpriors.
The common precision variable γr leading to large precision values of some γrs can result
in a good low-rank estimate of L [53]. After the above-mentioned combination of
equations, we modeled the MoG-RPCA to achieve the candidate contrast-filled vessel
detection, which turned to infer the posterior p U;V;Z;µ; τ;π; γ Dj Þð of all involved
variables, where Z5 zij


 �

;µ5 µ1; . . .;µK

� 	

; τ5 τ1; . . .; τKð Þ, and γ5 γ1; . . .; γR
� 	

.
To get variational inference of the posterior of MoG-RPCA, we computed the

true posterior p x Dj Þð with an approximation distribution q xð Þ by minimizing the
Kullback�Leibler (KL) divergence between p x Dj Þð and q xð Þ, that is,
min
qAC

KL q:p
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, where C denotes the set of probability
densities with certain constraints to make the minimization tractable. If we partition
the elements of x into disjoint groups xif g, q xð Þ is then generally assumed to be factor-
ized as q xð Þ5L

i
qi xið Þ. The solution for each group xj
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where p x;Dð Þ is the joint distribution of parameter x and observations D, and Ei 6¼j U½ �
denotes the expectation with respect to xis except xj. The solution for each group
xj


 �

can then be approached by alternatively optimizing each qj xj
� 	

by Eq. (4.6). The
posterior distribution of MoG-RPCA is factorized as the following form:
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where uiUðvjUÞ is the ith (jth) row of UðVÞ. The estimation of candidate foreground
and low-rank background components via MoG-RPCA can then be derived by esti-
mating all the factorized distributions involved in the above equation as follows.

4.3.2.1 Estimation of candidate foreground component

To estimate the parameters µ; τ;Z and π involved in the foreground vessel detection,
we got the following update equation for each parameter using the prior imposed in
Eq. (4.2) and its conjugate property:
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The posterior mixing coefficients π is similarly updated using the equation
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4.3.2.2 Estimation of low-rank background component

The posterior distribution for each row uiU of U (and vjU of V) involved in low-rank
background component can be approximated by
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We displayed the experimental results for the candidate vessel extraction (see the
middle column of Fig. 4.2), which leave some noisy artifacts in the vessel layers for
the subsequent vessel refinement via trajectory decomposition in MCR-RPCA.
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4.3.3 Motion coherency regularized RPCA for trajectory decomposition

Since the statistically structured RPCA is unable to encode the long-term temporal
coherency of XCA sequence, there still have some parts of noisy backgrounds in the
extracted candidate foregrounds. Inspired by the trajectory decomposition works [54]
that have preserved temporal consistency by assigning similar lables to the pixels
belonging to the same trajectories, we exploited the trajectory properties of blood ves-
sels by directly representing the motion coherency as spatiotemporal contiguity and
smoothness of the image pixels to refine the vessel extraction in the subsequent trajec-
tory decomposition.

The sparsely distributed sinuous courses of blood flow in vessels make the fore-
ground trajectories occupy a set of contiguous regions throughout image sequences.
Therefore, being different from the traditional L2;1 norm-based group sparsity con-
straint :S:2;1 [2] that treats each column of matrix as a whole, the L1-norm-based
pixel-wise sparsity constraint is more appropriate for the foreground trajectory extrac-
tion task. Then, the total variation minimization is further exploited as a motion
coherency constraint for the contrast-filled vessel extraction. Based on a difference
operator, the weighted TV regularization of matrix S can be defined as
:S:TV5wx:rxS:11wy:ryS:11wz:rzS:1 with default setting wx 5wy5wz 5 1,
where rx, ry, and rz correspond to difference operations performed along x (or

Figure 4.2 Vessel extraction examples via MCR-RPCA [5]. From left to right: the original images, the

candidate foreground vessels via the statistically structured MoG-RPCA, the final vessels via the

motion coherency regularized RPCA.
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row), y (or column), and z (or frame) directions, respectively. The combination of TV
and L1-norm of matrix S will encourage the proximate trajectories with similar
appearances to be grouped into the same foreground vessels. The motion coherency
regularized RPCA model is carried out as follows:

minL;S:L:�1λ1:S:11λ2:S:TV s:t: D5L1S ð4:11Þ

where D represents the candidate foreground matrix, L and S represent new low-
rank background and sparse foreground trajectories, respectively. The λ1 and λ2

are regularizing parameters. We used alternating direction method (ADM) to solve
the minimization problem in Eq. (4.11) with the solver Inexact Augmented
Lagrangian Multiplier Method (IALM) [53] by rewriting the Eq. (4.11) into
another form:

minL;S;T:L:�1λ1:S:1 1λ2:T:TV; s:t: D5L1S T5S ð4:12Þ

The augmented Lagrangian function of Eq. (4.12) is given by

ℒðL; S;T;X;Y;µÞ5 :L:�1λ1:S:11λ2:T:TV1
µ

2
:D2L2S:2

F

1 hX;D2L2 Si1 µ

2
:T2S:2

F
1 hY;T2 Si

ð4:13Þ

where X and Y are the Lagrangian multipliers, and µ is a positive penalty scalar. We
summarized the solutions of the subproblems based on the ADM strategy in
Algorithm 1.
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Using the ADM algorithm, we alternately optimized one variable (L, or S, or T) with
the other two variables fixed: for L subproblem optimization, it has closed-form solu-
tion by a soft shrinkage operator Sµ21ðyÞ5 sgnðyÞmaxðjyj2µ21; 0Þ with a threshold
µ21 for a scalar y, which operator is extended entry-wisely to vectors and matrices; S
subproblem is solved by a shrinkage operator with the implementation detail at the
following section; the split Bregman method [55] is adopted to solve T subproblem
optimization. In Algorithm 1, λ15 0:5=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðm; nÞ
p

and λ25 0:2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðm; nÞ
p

,
which can perform well on most experimental data.
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For the S subproblem optimization in Algorithm 1, the objective function is

Sk11 5 arg minSℒðLk11; S;Tk;Xk;Yk;µÞ

5 arg minSλ1:S:11
µ

2
:D2Lk112S:2

F
1 hXk;D2Lk112Si

1
µ

2
:Tk2S:2

F
1 hYk;Tk2 Si

5 arg minSλ1:S:11µ:Q2S:2
F

ð4:14Þ

where we denote Q5
D2Lk11 1Tk 1µ21ðXk 1YkÞ

2 . The objective function can be further
expressed as
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i51
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ðλ1jSi;jj1µjQi;j 2Si;jj2Þ ð4:15Þ

Eq. (4.15) can be minimized for each Si;j separately. The solution Sk11 for S sub-
problem is obtained by the soft shrinkage operator Sk115Sλ1 2µð Þ21ðQÞ, where the
operator S is performed element-wisely.

As for the T subproblem optimization in Algorithm 1, the objective function is as
follows:

Tk115 argmin
T

ℒðLk11;Sk11;T;Xk;Yk;µÞ

5 argmin
T

λ2jjTjjTV1
µ

2
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2
jjT2 ðSk112µ21YkÞjj2F

5 argmin
T

λ2ðjjrxTjj1 1 jjryTjj11 jjrzTjj1 1
µ

2
jjT2 ðSk112µ21YkÞjj2F

ð4:16Þ

To apply Bregman splitting method, we first replaced rxT by dx, ryT by dy, and
rzT by dz to yield the following constrained problem:

Tk115 argmin
T

λ2 jjdxjj11 jjdyjj11 jjdzjj1
� 	

1
µ

2
jjT2Kjj2F s:t:dx5rxT; dy

5ryT; dz5rzT ð4:17Þ
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where K5Sk112µ21Yk. To weakly enforce the constraints in this formulation, we
added penalty function terms to obtain the following objective function:

Tk115 arg min
dx;dy;dz;T

λ2ðjjdxjj11 jjdyjj1 1 jjdzjj1Þ1
µ

2
jjT2Kjj2F

1
λt

2
jjdx 2rxTjj2F 1

λt

2
jjdy 2ryTjj2F 1

λt

2
jjdz 2rzTjj2F ð4:18Þ

where λt represents the weight of penalty function. Finally, we strictly enforced the
constraints by applying the Bregman iteration [55] to get

Tk115 arg min
dx;dy;dz;T

λ2ðjjdxjj11 jjdyjj1 1 jjdzjj1Þ1
µ
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where the proper values of bkx, b
k
y, and bkz are chosen through Bregman iteration. We can

efficiently solve the minimization problem in Eq. (4.19) by iteratively minimizing it with
respect to d and T separately. For the solution of T, we have the following subproblem:

Tk11 5 argmin
T

µ

2
jjT2Kjj2F 1

λt

2
jjdkx2rxT2 bkxjj2F 1

λt

2
jjdky 2ryT2 bkyjj2F

1
λt

2
jjdkz 2rzT2 bkzjj2F ð4:20Þ

with an optimality condition

ðµI2λt∆ÞTk115µK1λtrxTðdkx2 bkxÞ1λtryTðdky 2 bkyÞ1λtrzTðdkz2 bkzÞ: ð4:21Þ

In order to achieve optimal efficiency, we used a fast iterative algorithm to get an
approximate solution to the problem in Eq. (4.20). Due to the problem being strictly
diagonally dominant, a natural component-wise solution of Gauss�Seidel method for
this problem should be represented as Tk11

i;j 5Gk
i;j

Gk
i;j 5

λt

µ1 6λt

ðTk
i11;j;l 1Tk

i21;j;l 1Tk
i;j11;l 1Tk

i;j21;l 1Tk
i;j;l111Tk

i;j;l21

1 dkx;i21;j;l 2 dkx;i;j;l 1 dky;i;j21;l 2 dky;i;j;l 1 dkz;i;j;l212 dkz;i;j;l

2 bkx;i21;j;l 1 bkx;i;j;l 2 bky;i;j21;l 1 bky;i;j;l 2 bkz;i;j;l21 1 bkz;i;j;lÞ1
µ

µ1 6λt

Ki;j;l

ð4:22Þ

where Tk11 has the same meaning as Tk11 in Eqs. (4.17) and (4.21), here is for the
sake of convenience.
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Table 4.1 demonstrates the performance comparison of vessel extraction via our
MCR-RPCA and other classical RPCA-based methods. The performance is evaluated in
terms of detection rate, precision, F-measure, and contrast-to-noise ratio (CNR) that mea-
sure the contrast between the foreground and background pixel intensities in relation to
the standard deviation of the background pixel intensities. A larger CNR value implies a
better contrast and thus a better performance of foreground/background separation. We
used two different versions of CRN by defining two different background masks in XCA
images. We refer the interested readers to Ref. [5] and the references therein.

4.4 SVS-net: sequential vessel segmentation via channel attention
network

Recently, deep learning has become the most widely used approach for cardiac image seg-
mentation [12] which covers common imaging modalities including MRI, CT, and ultra-
sound. However, due to the overlapping structures, low contrast, and the presence of
complex and dynamic background artifacts in XCA images, accurately segmenting
contrast-filled vessels from the XCA image sequence is particularly challenging for both
classical modal-driven and modern data-driven deep learning methods. Being different
from current several works that solely focused on segmenting main vessel from XCA
[63�65], we have developed a novel encoder�decoder deep sequential vessel segmenta-
tion network (SVS-net, https://github.com/Binjie-Qin/SVS-net) [15] for entire XCA ves-
sel network segmentation, which exploits several contextual frames of 2D1 t sequential

Table 4.1 Performance comparison of eight RPCA methods on the X-ray coronary angiography

sequences.

Method Detection

rate

Precision F-

measure

CNR1 CNR2 Time

MCR-PCA1 0.71258 0.83955 0.76976 2.88208 3.27754 919.34 s
Block-RPCA [56]2 0.70313 0.83132 0.7591 2.57224 2.93497 4 h
DECOLOR [57]3 0.68435 0.84038 0.75024 2.62923 2.69954 148.5 s
IALM-BLWS [58]4 0.68957 0.84053 0.75618 2.58344 2.95259 74.84 s
FPCP [59]5 0.67088 0.76977 0.71303 2.39507 2.22859 0.98 s
GoDec [60]6 0.656308 0.77700 0.70826 2.34807 2.12574 1.41 s
TFOCS-EC [61]7 0.63397 0.79817 0.70273 2.34603 2.11375 304.37 s
PRMF [62]8 0.68573 077546 0.72556 2.56356 2.45889 42.06 s
1https://github.com/Binjie-Qin/MCR-RPCA.
2https://www.ece.nus.edu.sg/stfpage/eleclf/.
3http://bioinformatics.ust.hk/decolor/decolor.html.
4https://www.ece.nus.edu.sg/stfpage/eleclf/.
5https://sites.google.com/a/istec.net/prodrig/Home/en/pubs.
6https://github.com/andrewssobral/godec/.
7https://github.com/cvxr/TFOCS.
8http://winsty.net/prmf.html.
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images in a sliding window centered at current frame to continuously segment 2D vessel
masks from the current frame in the XCA sequence.

4.4.1 Architecture of sequential vessel segmentation-network

Being modified from classical U-net architecture [66,67], the SVS-net architecture has
three main modules that are equipped with spatiotemporal (2D1 t) feature extraction
in encoder module, 3D feature fusion operation (FFO) in skip connections, and chan-
nel attention block (CAB) in decoder module (See Fig. 4.3). Specifically, (1) A
sequence of 3D convolutional layers hierarchically extracted spatiotemporal 3D

Figure 4.3 The proposed sequential vessel segmentation-network architecture, which is based on

U-Net with the encoder network extracting 3D feature from the input sequence and the decoder

network learning the salient feature via upsampling and operation of CAB, between the encoder

and decoder network is the skip connection layer with FFO. The numbers 8, 16, 32,... above each

block denote the number of output channels for that block. Each block has different convolutional

kernel sizes and strides (s: strides). In the FFO and CAB in the bottom, the FAℝ
C3 T 3H3W denotes

the temporal-spatial feature maps, C denotes channel axis, T denotes temporal axis, H denotes

height axis, W denotes width axis, FcAℝ
C3H3W : the cth channel of temporal-spatial feature maps.

FcfusingAℝ
H3W denotes the cth channel of fused temporal-spatial feature map through Conv3D with

kernel size 43 13 1 and strides (1,1,1) [15].
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features in the encoder module. We introduced 3D residual blocks to extract multi-
scale spatiotemporal features while easing network optimization in the encoder mod-
ule; (2) Skip connections that connect the encoder and decoder subsequently fused
the spatiotemporal feature maps along temporal axis and delivered the fused 2D spatial
feature maps to the corresponding decoder stages. Through the 3D feature fusion in
the left bottom of Fig. 4.3, the feature maps' dimension mismatch problems between
the 3D encoder stage and the 2D decoder stage was solved with computation cost
being simultaneously reduced; (3) The decoder module utilized CAB to refine the
intermediate feature maps from skip connections by learning discriminative feature
representation and suppressing the complex and noisy artifacts in the XCA images; (4)
Dice loss function was further implemented to train the SVS-net in order to solve the
class imbalance problem in the XCA data causing by the imbalanced ratio between
backgrounds and foreground vessels.

4.4.1.1 Modification of U-net

The U-Net was chosen as a fundamental architecture for SVS-net due to its being a
classical and powerful segmentation network architecture widely used for biomedical
imaging, which can improve the spatial accuracy of a deep neural network for final
high-resolution segmentation results by effectively exploring underlying both high-
resolution and low-resolution information in biomedical images and transmitting mul-
tiscale information from encoder network to decoder network via skip connections.
Specifically, to accurately segment vessels from XCA with low contrast and fuzzy
boundary, the skip connection mechanism in U-Net allowed high-resolution informa-
tion delivery to the decoder network for detail recovery. Furthermore, the low-
resolution semantic information about the internal tissues and their topologies in XCA
images can be simply provided by multiple downsampling operations in U-Net’s
encoder network for the target vessel recognition.

To achieve accurate XCA vessel segmentation, we have designed a U-Net-based deep
learning architecture with several notable features: (1) The encoder network was modified
to extract 3D spatiotemporal contexts through 3D convolutions followed by 3D residual
convolutional blocks except the last convolutional operation. There were totally seven
stages of 3D convolutions with the first six convolutional stages followed by 3D residual
convolutional block, which were utilized to extract rich spatiotemporal feature contexts
for subsequent vessel mask extraction in the decoder network. The output of each 3D
residual convolutional block was linked to the next 3D convolutional stage and skip con-
nection layer, respectively. The spatial dropout (0.5) at the last two 3D convolutional
stages was employed before executing convolution to avoid overfitting. The encoder net-
work was capable of effectively extracting 3D spatiotemporal features from the context of
sequential XCA images which contain long-range vessel details of different scales and dif-
ferent vessel types that may not appear in a single image.
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(2) In the skip connection layer, the spatiotemporal feature representations were
fused by mapping from 3D space to 2D space via 43 13 1 convolutional kernels in
FFO block, where the first dimension of convolutional kernel indicates four channels
(frames) in the temporal axis. The temporal domain features from these four frames
were then fused together by temporal axis convolution. The computation of FFO can
be formulated as follows:

XFl 5 SqueezeðXF �W Þ ð4:23Þ

where XFAℝ
C3T 3H 3W is the spatiotemporal feature map outputted from each 3D

convolutional stage in the encoder network with the C;T ;H ;W being features’ chan-
nel dimension, temporal dimension, height, and width, respectively. XFLAℝ

C3H 3W

fuses the spatiotemporal feature map.W is a 43 13 1 convolutional kernel with �
representing convolution operation. Squeeze denotes dimension compress.

(3) In the decoder network, the parameter-free bilinear upsampling strategy rather
than transposed convolutional operations was adopted to gradually recover the feature
maps’ spatial resolution, which can reduce the number of trainable parameters without
degrading the segmentation performance. A sequence of CAB modules that follow
upsampling layer was designed to gradually fuse low-stage and high-stage XCA feature
maps, whose output was further linked to 2D residual convolutional blocks (Block2D,
see Fig. 4.3). The two outputs of low-stage feature maps from the skip connection
layer and the high-stage feature maps from the upsampling layer were feed simulta-
neously in CAB (as illustrated in the right bottom of Fig. 4.3) to learn the most dis-
criminative features from noisy and complex background artifacts (see details in
Section 4.4.1.4). After the last 2D residual convolutional block in the end of sequential
decoder networks, we employed 13 1 convolution followed by sigmoid activation
function to yield final high-resolution vessel mask.

4.4.1.2 3D spatiotemporal feature encoder

For a set of frames (F1,F2,. . .Fn) in the XCA image sequence, the contextual informa-
tion such as the low contrast intensity distribution and the similar appearances embed-
ded in the successive frames are helpful to infer whether one pixel of each frame
belongs to either the foreground or background. Specifically, in these successive
frames, blood flow in the contrast-filled vessel regions moves fast and consistently
through the contiguous frames and the noisy backgrounds fluctuate synchronously
along with human breathing and heart beating. Therefore these consistent contexts
can provide spatiotemporal information to accurately identify vessels from back-
grounds. The SVS-net accepts inputs from the successive four frames (i.e., Fi22;Fi21,
Fi, Fi11) to predict a binary probability map (i.e., Pi) where the foreground vessel pixel
values equal 1 while other background pixel values equal 0.
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To verify the choice of four frames as an appropriate input configuration, we chose
different frames, that is, 2, 3, 4, 5 frames, as the input of network to investigate the
network’s different convergence performances. We observed some subtle differences
of convergence results on Dice loss function in our experiment results [15]. When
inputs from four frames were fed in the network, the loss function converged at about
20.86, which is the smallest compared with those of other input strategies. The
choice of four frames is thus appropriate to be served as the input configuration for
accurate vessel segmentation.

4.4.1.3 2D and 3D residual convolutional blocks

Increasing the depth of a neural network can improve network generalization capacity,
but it introduces the difficulty in promoting gradient backpropagation for the training of
deep neural network. To ease the training of deep neural network, He et al. [68] devel-
oped deep residual network to facilitate gradient backpropagation by explicitly reformulat-
ing the network layers as learning residual functions with reference to the layer inputs
instead of learning unreferenced functions. As demonstrated in the work of wide residual
networks [69], two stacked convolutional layers in single residual block are optimal archi-
tecture compared with other settings. Inspired by these works, we employed 3D residual
blocks and 2D residual blocks in encoder and decoder networks respectively. Between the
encoder and decoder networks, the skip connection layer with FIFO was added to
increase the depth and improve the accuracy of deep CNNs.

4.4.1.4 Channel attention mechanism

Aiming to highlight the most dominant target regions in an image, visual attention
mechanism has been widely developed from traditional model-driven image computa-
tion to modern data-driven deep learning for visual saliency detection in both cogni-
tive and computational sciences. The visual saliency computations for single image,
image pair, and video sequence have been widely exploited in numerous applications
to improve their performance for object detection [70], image retrieval [71], image
registration [72�74], image cosegmentation [75,76], and video analysis [77]. Attention
mechanism in deep learning can be viewed as a generalization of estimating weights
for a weighted average in a regression model, where weights encode the relevance of
the training instance to the query. Visual attention has become popular in many deep
learning-based computer vision tasks to focus on relevant regions within the image
and capture structural long-range dependencies between the images of video
sequences. Furthermore, attention modeling is particularly important for the interpret-
ability of deep learning architectures since the magnitude of attention is assumed to be
a particular weight that correlates with how relevant a specific region of input is for
the prediction of output at each position in a spatiotemporal sequence.
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To represent rich multiscale features for extracting target vessels from complex and
dynamic backgrounds, the SVS-net first exploits encoder network to extract multiple
types of features from the whole XCA images by multiple convolutional kernels in every
convolutional stage of the encoder module (see Fig. 4.3). Through the attention mecha-
nism of CAB assigning different weights to the extracted features, the SVS-net can adap-
tively highlight some channel information meanwhile suppress the trivial channel
information containing noisy background disturbances. Hence, the predicted probability
map is gradually improved. Specifically, the feature maps of the low-stage output from the
skip connection layer are weighted in CAB and then combined with the corresponding
high-stage feature maps output from the upsampling layer. Since high-stage output feature
maps provide more advanced global semantic information while low-stage feature maps
contain more detailed yet noisy information, the high-stage features can then be used as
guide clues to filter useful information from low-stage feature maps and achieve more
pure feature representation for target vessel. The core modules of CAB is presented as fol-
lows (see the CAB in the bottom right of Fig. 4.3):

Global average pooling (GAP) can be considered as a simplest version of channel-
wise attention, which computes the channel-wise statistic GAℝ

C3 13 1 of the given
input feature maps by averaging across each H 3W spatial dimension. The cth chan-
nel statistic sc of s is computed as follows:

Gc Xð Þ5 1

H 3W

X

H

h51

X

W

w51

Xc h;wð Þ ð4:24Þ

where XcAℝ
H 3W ;’cA 1; . . .;Cf g refers to the cth feature of the input feature map. In

our work, the low-stage feature maps XFlAℝ
C3H 3W and the corresponding high-stage

feature maps XFhAℝ
C3H 3W are concatenated together to make feature maps

XFAℝ
2C3H 3W . Then a GAP is performed on the concatenated feature maps to generate

a weighted vector W XF
Aℝ

2C3 13 1. Two 13 1 convolutional operations, which are fol-
lowed by the rectified linear unit function and sigmoid function, respectively, are performed
on WXF

Aℝ
2C3 13 1 to learn interchannel relationship and the final channel attention

weight vector WXF
Aℝ

C3 13 1 is achieved. The obtained attention vector multiplies low-
stage feature maps in channel-wise manner, then the weighted feature maps from low stage
are added with the corresponding high-stage feature maps to be subsequently passed to the
next layer. The whole process of generating attention weights can be expressed as:

WXF
5φðϕðGðXFÞÞÞ ð4:25Þ

where G means the operation of GAP, ϕ denotes 13 1 convolution followed by recti-
fied linear unit and φ indicates 13 1 convolution followed by sigmoid activation. An
intuitive display of CAB is shown in the left bottom of Fig. 4.4. Under the guidance of
high-stage features, the attention weights are learned and used to obtain discriminative
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salient features for target vessels. As displayed in Fig. 4.4(a3)(b3), CAB has successfully
refined the low-stage feature map from the output of skip connection. The background
disturbances in Fig. 4.4(a2)(b2) are greatly suppressed while the foreground vessel fea-
tures are highlighted.

4.4.1.5 Data augmentation

Since there are several limitations in annotated data for supervised segmentation deep net-
work, including scarce annotations where only limited labeled data are available for training,
as well as weak and noisy annotations where the training data have sparse and erroneous
annotations. Especially, for vessel annotation in XCA images, the contrast-filled vessel net-
works are distributed and overlapped in the complex noisy backgrounds with similar appear-
ances to the foreground vessels, which make it very difficult and time-consuming for
manually labeling vessel networks (especially with distal vessels) from backgrounds. To
improve the network’s generalization and accuracy based on small labeled datasets, data aug-
mentation techniques increasing both the size and diversity of labeled training datasets are

Figure 4.4 Illustrating the CAB’s effects on suppressing the noises in the background areas while

highlighting the foreground vessel feature. From left to right, each row displays the original XCA image;

the second channel of fused spatial feature maps in the output of the second skip connection layer

(Fig. 4.3) before inputting to the CAB, which contains noise pollution from the background areas; the

second channel of refined feature maps from the output of CAB in the decoder stage (Fig. 4.3).
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required to generate new labeled data points for training via transformations of existing
image.

SVS-net used various sample transformations to augment data from existing data,
which include rotations by the angles ranging in ½2 10

�
; 10

� �, flipping both horizon-
tally and vertically, scaling by a factor of 0:2 random crop, and affine transformations.
For the images in our dataset, there is a 50% probability to perform each of the above
transformations to generate new samples in real-time during the training process.

4.4.1.6 Loss function for class imbalance problem

Class imbalance is a common problem in which a dataset consists of examples primarily
from one specific class. This could manifest itself in XCA vessel segmentation problems
such that there is a clear majority�minority class distinction between the backgrounds and
foreground vessels due to the contrast-filled vessels being sparsely visualized in the spatio-
temporal sequence. Specifically, the class imbalance problem is typically represented as two
aspects in XCA vessel segmentation: first, the number of negative pixels (being 0 for back-
ground) is much greater than the number of positive pixels (being 1 for the vessel pixels);
second, the ratio between the two classes varies a lot in terms of both interframe differences
in the same XCA sequence and intersequence differences in the different XCA sequences.

In supervised deep learning, imbalanced datasets are harmful because they bias
deep learning models toward majority class predictions and render accuracy as a
deceitful performance metric. Many data-level and algorithm-level solutions [78] are
proposed to deal with class imbalance in big data in deep learning. The above-
mentioned data augmentation falls under a data-level solution to class imbalance.

Among the algorithm-level solutions, the design of loss function [79] is very important
in the deep learning to evaluate how well the predicted segmentation matches the ground
truth. Currently, there is no widely accepted common view about the best loss function
for image segmentation. However, there are some insights from existing literature. For
example, the Dice loss or generalized Dice loss has proven to perform well for the mildly
imbalanced problems [79]. Being different from the cross entropy highlighting each pixel
equally to the CE loss, the Dice loss function measures the overlap ratio between ground
truth mask and the predicted vessel mask such that it is appropriate to be adopted in SVS-
net to guide parameters learning. Dice loss is defined as follows:

LDiceCoef 52

2
P

N

1
piyi 1 E

P

N

1
pi1

P

N

1
yi 1 E

ð4:26Þ

where yiAf0; 1g is the ground truth label and piA½0; 1� is a predicted value for location
i. N is the total number of pixels, E is a very small constant used to keep value stable.
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From Eq. (4.26) we can find that the Dice loss is applied to the whole mask and it
measures the overall loss for that mask rather than the average loss across all the pixels.

Recently, Kervadec et al. [80] have demonstrated that combining boundary loss
with generalized Dice loss can address highly imbalanced segmentation tasks, we
assume that not only using compound loss functions but also highlighting the bound-
ary information with the overlap ratio between ground truth mask and the predicted
vessel mask may be a more better choice for segmenting the dynamically and sparsely
distributed vessel networks from the complex background.

4.4.2 Segmentation experimental results

4.4.2.1 Materials

All the experiments performed in this work were approved by our institutional review
board. Our experiments were implemented on GPU (i.e., NVIDIA 1080 Ti, 11GB)
and acquired 120 sequences of real clinical X-ray coronary angiography images from
Ren Ji Hospital of Shanghai Jiao Tong University. Each sequence has a length of
30�140 frames. Three experts manually labeled the images from 120 sequences to
constitute the ground truth. To eliminate the differences in the resolution, the noise
distribution, and the pixels' intensity range of different frames in these XCA sequences
that are acquired from different machines (i.e., 800 mAh digital silhouette angiography
X-ray machine from Siemens, medical angiography X-ray system from Philips), we
resized the images from the XCA sequence into 5123 512 resolution with 8 bits per
pixel, and employed Poisson denoising methods to smooth the noise and normalize
the pixels' intensity range into 0�1. The dataset is stored in mat array format accord-
ing to the corresponding filenames and will be available on the website https://github.
com/Binjie-Qin/SVS-net.

Due to the varieties of XCA images with different directions and angles of X-ray
penetration as well as different patient sources with different dosages of contrast agents,
the visibility of different vessel sequences in the clinic is quite changeable such that
designing a robust vessel segmentation algorithm is necessary for the XCA data with
this poor visual quality. In addition, proper selection of frames from each sequence for
experiment is crucial especially when both the background and foreground are
dynamic and contain many artifacts. From the 120 annotated sequences, we selected
the XCA images that contain most vessel structures with good visual quality as a total
of 332 experiment samples. The dataset is randomly divided into training dataset, vali-
dation dataset, and test data at approximately 0.5, 0.25, and 0.25 ratios, respectively.

We validated the SVS-net's performance on the above-mentioned dataset by plot-
ting the loss curves for both the training and validation set in the training process [15].
For both the training and validation set, the loss reduced quickly at the beginning
stage of training process and gradually converged, indicating the SVS-Net having no
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problem of over-fitting or under-fitting state. Meanwhile, the size of our dataset was
assumed to be properly matched into the size of our model.

4.4.2.2 Performance comparison

We compared SVS-net with three traditional vessel segmentation algorithms, that is,
Coye's method [81], Jin’s spatially adaptively filtering method (Jin's) [11], Kerkeni’s mul-
tiscale region growing method (Kerkeni's) [82], and four deep learning-based methods
that include Retinal-net [67,83], bridge-style U-Net with salient mechanism (S-UNet)
[84], X-ray net [85], and short connected deep supervised net (BTS-DSN) [86].

In Fig. 4.5, the deep learning methods surpassed traditional methods with higher
performances in terms of some metrics [15]. The patch-based Retinal-net method
introduced more background residuals since it lacked more global contextual informa-
tion to guide the segmentation. X-ray net simply accepted the current frame image
with its first three frames as the inputs to the network and cannot effectively extract
the temporally consistent information. Therefore it not only increased temporal infor-
mation but also introduced disturbances at the same time. BTS-DSN adopted deeply
supervised strategy to achieve relative higher metrics with some false positives in the vessel
regions. Being different from the above deep network methods, SVS-net not only
robustly detected the vessels with entire structures and continuous branches but also effec-
tively removed the noisy backgrounds. The continuity and integrity of the segmented ves-
sel branches were due to the contextual information inferred in the spatiotemporal
features extracted by the encoder network and feature fusion in the skip connections. The
noise suppression in the segmented vessel regions was mostly derived from the

Figure 4.5 Vessel segmentation examples for real XCA image sequence by different vessel seg-

mentation methods [15]. From left to right, each row displays the original XCA image, the ground

truth vessel segmentation, the vessel images segmented by Coye’s, [71] Jin’s, [11] Kerkeni’s, [72]

Retinal-net, [73] SU-Net, [74] X-ray net, [75] BTS-DSN, [76] and SVS-net, [15] respectively.
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discriminative feature selection implemented by the channel attention mechanism.
Therefore the spatiotemporal feature extraction, feature fusion, and the discriminative fea-
ture learning adopted in SVS-net were helpful to improve the segmentation
performances.

However, there is a small number of thin-vessel branches unrecognized by SVS-
net. A new design of a hybrid loss function combined with network architectures is
desirable to efficiently differentiate the thick and thin vessels with their different
weights. That is, the deep gives more weight to these thin vessels via topology-pre-
serving loss function [87] and pays more attention to these thin vessels.
Topology-preserving vessel segmentation is definitely a very promising direction for
improving the clinical value of XCA images.

4.5 VRBC-t-TNN: accurate heterogeneous vessel extraction via tensor
completion of X-ray coronary angiography backgrounds

By modeling XCA sequence with low-rank plus sparse decomposition, motion coherency
regularized RPCA [5] has been successfully exploited to recover the sparsely distributed
contrast agent in the vessel networks from the low-rank subspace of backgrounds [21].
However, current RPCA-based methods have the following limitations: (1) Some parts of
XCA vessel have low-rank properties due to the underlying pattern of periodic heartbeat
and the contrast agent’s adhesion along the vessel wall, current RPCA methods therefore
always have vessel residue as part of the low-rank backgrounds such that the extracted ves-
sels suffer from severe distortion or loss of vessel intensity. This intensity loss results in an
incomplete vessel recovery and makes it impossible for accurately analyzing the contrast
agent concentration and the corresponding blood flow perfusion. (2) Vectorizing the
XCA sequence into a matrix in RPCA ignores the 3D spatiotemporal information
between the consecutive frames of the XCA sequence. For example, X-ray imaging pro-
duces a lot of dense noisy artifacts, whose positions change in gradually moving patterns in
the XCA frames. The RPCA methods often mistakenly recognize these moving artifacts
as foreground objects. (3) XCA sequence has serious signal-dependent noises that locally
affect every entry of the data matrix and result in unsatisfying foreground vessels that are
contaminated with residual artifacts. Though MCR-RPCA takes advantage of Bayesian
RPCA that models data noise as MoGs, current RPCA-based methods cannot tackle the
challenging problem of spatially varying noise in low-rank plus sparse decomposition.

To extract the foreground vessels that are overlapped with backgrounds, we assume
that the overlap between foreground vessels and the backgrounds is present in the ves-
sel regions. Once contrast-filled vessel regions are masked by the SVS-net vessel seg-
mentation with high detection rates, all the other pixels in the remaining regions can
be regarded as sequential background layers. Furthermore, based on the spatiotemporal
consistency and low-rankness of the sequential background layers, the missing parts of

113Extracting heterogeneous vessels



the background layers masked with the foreground vessels can be fully completed
using the state-of-the-art tensor completion method. Then, the challenging problem
of foreground vessel extraction can be tackled by subtracting the completed back-
ground layers from the overall XCA data (see Fig. 4.6). Therefore we exploited the
low-rank tensor completion [88] to recover a low-rank tensor from noisy partial
observations of its entries. Tensors [89,90] refer to multidimensional arrays, which can
naturally reserve more spatiotemporal information than do the matrices. Different
from RPCA using matrix representation for XCA sequence, the tensor-based comple-
tion methods infer the unknown missing pixels from the known pixels in the spatio-
temporal contexts of XCA sequence. Mathematically, the low-rank tensor completion
problem can be written as

minX rank Xð Þ; s:t: PΩðXÞ5PΩðMÞ ð4:27Þ

Figure 4.6 Vessel intensity recovery [15]. From top to bottom row, each row displays the original

XCA image, the background and foreground vessel images recovered from SU-Net [74], X-ray net

[75], BTS-DSN [76] and SVS-net [15], respectively.
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where M is the corrupted tensor, X is the underlying tensor, and PΩðX Þ refers to the
projection of X on the observed entries Ω.

Based on different definitions of tensor ranks, many tensor completion models
have been proposed. Typically, tensor nuclear norm (TNN) [91] that is designed for
3D tensors based on tensor singular value decomposition (t-SVD) [92] has proven
effective at 3D tensor completion [88]. Hu et al. have further optimized the TNN
model for the video completion task by integrating a twist operation [93].

According to Beer�Lambert Law, a given X-ray image is assumed to reflect the
X-ray exponential attenuation composition (or sum) of material linear attenuation coeffi-
cients for the foreground contrast-filled vessels and background layers along the X-ray
projection paths. The additive property of X-ray exponential attenuation composition
along the vessel and background layers in XCA can be directly exploited to exactly
decompose the whole XCA image into the vessel and background layers. Therefore this
X-ray attenuation sum model justifies the above-mentioned foreground vessel extraction
strategy via completion and subtraction of the background layers from the whole XCA
images. Specifically, we proposed an accurate heterogeneous vessel extraction framework
in a logarithmic domain, into which the raw XCA image is first mapped. We extracted
the vessel mask regions via SVS-net and subsequently recovered vessel intensities in these
regions by a tensor completion method called t-TNN (twist tensor nuclear norm) [93].
By focusing on the vessel intensity recovery problem only in the small parts of vessel
regions, the proposed vessel recovery method called VRBC-t-TNN can extract vessel
layers with accurate recovery of vessel structures and intensities.

4.5.1 Global intensity mapping

A global logarithm mapping was carried out on the whole XCA image data to per-
fectly fit the X-ray attenuation sum model of angiograms. In X-ray imaging, photons
coming through human body are attenuated by contrast agents and various human tis-
sues. The intensity of rays is reduced exponentially by the sum of attenuation coeffi-
cients, as the following equation:

Xout5Xine
2

Ð

d
µdx ð4:28Þ

where Xin and Xout represent the intensities of X-rays that come into and out of
human body, respectively, µ denotes the attenuation coefficient, and d denotes the
path of rays.

By applying the log operator on both sides, we got

2lnðXout=XinÞ5
ð

d

µdx: ð4:29Þ
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The XCA image intensity normalized to the range [0,1] can be regarded as the
normalization of its intensity, that is, the ratio of Xout to Xin. Then we got the follow-
ing equation:

2lnðIXCAÞ52 lnðXout=XinÞ5
ð

d1

µdx1

ð

d2

µdx5AF 1AB; ð4:30Þ

where AF and AB represent the attenuation sums caused by foreground vessels and
complex backgrounds, respectively. This equation demonstrates that the XCA image
is a sum of vessel/background layers in the logarithm domain, accordingly the multi-
plication of the two layers in the original image domain.

After this logarithm mapping, the linear sum model was ready for vessel/back-
ground separation via low-rank plus sparse matrix decomposition in RPCA (Illustrated
in Section 4.3), as well as low-rank background plus foreground vessel extraction in
tensor completion (Illustrated in Section 4.6). Therefore we used the logarithm opera-
tion as a preprocessing of image data and performed exponentiation operation after-
ward for the whole experiments in this work.

4.5.2 Background completion using t-TNN

Considering the vessel mask regions as missing entries of the background layer, we
recovered the intensities of these entries for the construction of background layers by
adopting the t-TNN tensor completion algorithm [93], which can effectively exploit
the temporal redundancy and low-rank prior between the neighboring frames more
efficiently. Specifically, the original XCA sequence was represented as a tensor D with
each slice being a matrix representation of each frame. All areas except the vessel mask
regions, denoted as Ω, were presumed to be the known background layer pixels. Each
vessel mask region was first morphologically dilated by a 53 5 mask to ensure that Ω
does not contain edge pixels of the vessels. Therefore the background regions of all
the frames constituted Ω for the subsequent t-TNN-based tensor completion.

The t-TNN model is based upon a tensor decomposition scheme called t-SVD
[92,94]. Having a similar structure to the matrix SVD, t-SVD models a tensor in the
matrix space through a defined t-product operation [92]. For a 3-way tensor
XAℝ

n1 3 n2 3 n3 , the notation X k; :; :ð Þ, X :; k; :ð Þ, and X :; :; kð Þ denote the k-th horizon-
tal, lateral, and frontal slices, respectively. Particularly, X ðkÞ denotes X :; :; kð Þ. For
XAℝ

n1 3 n2 3 n3 , the X ðkÞ values can be used to form the block circulant matrix

bcircðXÞ5
X ð1Þ X ðn3Þ

? X ð2Þ

X ð2Þ X ð1Þ
? X ð3Þ

^ ^ & ^
X ðn3Þ X ðn321Þ

? X ð1Þ

2

6

6

4

3

7

7

5

; ð4:31Þ
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The block vectorizing and its opposite operation are defined as

bvecðX Þ5
X ð1Þ

X ð2Þ

^
X ðn3Þ

2

6

6

4

3

7

7

5

;bvf oldðbvecðX ÞÞ5X ð4:32Þ

The bdiag operator which maps the tensor to the block diagonal matrix and its
opposite operation bdfold are defined as

bdiagðX Þ5
X ð1Þ

&

X ðn3Þ

2

4

3

5;bdf oldðbdiagðX ÞÞ5X : ð4:33Þ

Based on these notations, the t-product is defined as follows [92]:

M5A � B5bvf oldðbcircðAÞbvecðBÞÞ:

The t-product is analogous to the matrix product except that the circular convolu-
tion replaces the product operation between the elements. The following equation
shows that original t-product corresponds to the matrix multiplication of the frontal
slices in the Fourier domain:

M
ðkÞ
f 5A

ðkÞ
f � BðkÞ

f ; k5 1;?; n3: ð4:34Þ

where X f 5 f f t X ; ½ �; 3ð Þ denotes the Fourier transform of X along the third dimen-
sion. Accordingly, X 5 if f tðX f ; ½�; 3Þ. Based on the definition of t-product, the
tensor-SVD (t-SVD) [94] of XAℝ

n1 3 n2 3 n3 is given by

X 5U � S � VT ; ð4:35Þ

where UAℝ
n1 3 n1 3 n3 and VAℝ

n2 3 n2 3 n3 are orthogonal tensors, respectively.
SAℝ

n1 3 n2 3 n3 is a rectangular f-diagonal tensor in which all of its frontal slices are
diagonal matrices, and the entries in S are called the singular values of X .

Based on the Fourier domain property of t-product as Eq. (4.34), t-SVD can be effi-
ciently computed in the Fourier domain [92,94]. Each frontal slice of U f , Sf , and V f

can be obtained via the matrix SVD, that is, ½U ðkÞ
f ;SðkÞ

f ;VðkÞ
f �5SVDðX ðkÞ

f Þ. Then the
t-SVD of X can be obtained by U5 if f tðU f ; ½�; 3Þ;S5 if f tðSf ; ½�; 3Þ;V5 if f tðV f ; ½�; 3Þ.
The TNN of XAℝ

n1 3 n2 3 n3 is defined as the average of the nuclear norms of all the
frontal slices of X f [94], that is,

jjX jj,5
1

n3

X

n3

i51

jjX ðiÞ
f jj�5

1

n3
jjbcircðXÞjj� ð4:36Þ
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Using the definition of TNN, the TNN-based tensor completion [93] can be
represented by

minX jjX jj,; s:t: PΩðX Þ5PΩðMÞ; ð4:37Þ

where M is the corrupted tensor, PΩðX Þ refers to the projection of X on the observed
entries Ω. Accordingly, PΩ\ðXÞ is the complementary projection, that is,
PΩðX Þ1PΩ\ðXÞ5X . The tensor completion problem can be solved using the t-SVD
mentioned above.

TNN can simultaneously characterize the low-rankness of a tensor along various
modes and therefore is a general model for 3D data completion problems. Based on
the TNN, Hu et al. [93] proposed twist TNN (called t-TNN) via twist operator on
the tensor. That is, for XAℝ

n1 3 n2 3 n3 , the twist tensor X
-

is an n13 n2 3 n3 tensor
whose lateral slice X

-ð:; k; :Þ5X ð:; :; kÞ. Though this twist operation is simply a dimen-
sion shift of tensors, it emphasizes the temporal connections between frames. The
t-TNN norm :X: ~,

of tensor X is then defined as follows:

:X: ~,
5

1

n3
:bcircð~X Þ:�; ð4:38Þ

where the twist operation ~X is a dimension shift of X , and Y
’

shifts it back. By equalizing
the nuclear norm of the block circulant matriculation of the twist tensor, t-TNN can not
only exploit the correlations between all the modes simultaneously but also take advantage
of the low-rank prior along a certain mode, for example, X-ray image sequence over the
time dimension. Specifically, by exploiting the low-rank prior along the horizontal transla-
tion relationship between frames in XCA image sequences due to patient's breath and
movement, we have found that the t-TNN model is more suitable than TNN for our
XCA background completion work. Therefore by minimizing the t-TNN norm-based
rank of the input tensor subject to certain constraints, the tensor completion work for
XCA background recovery can be addressed by solving the following convex model [93]:

minX:X: ~,
; s:t: PΩðXÞ5PΩðDÞ ð4:39Þ

where D and X refer to the original corrupted data tensor (original XCA sequence)
and the reconstructed tensor (background layer), respectively.

The alternating direction method of multipliers algorithm [95] can be used to solve
the Eq. (4.39) by the following minimization model [93]:

argminX ;Y;W:Y: ~,
1 1XΩ5DΩ

1 hW;X 2Yi1 ρ

2
:X2Y:2

F
; ð4:40Þ

where a new variable Y5X is introduced, 1XΩ5DΩ
is an indicator function that indicates

whether the elements of X and D on the support of Ω are equal, W is the Lagrangian

118 Cardiovascular and Coronary Artery Imaging



multiplier, and µ is a positive penalty scalar. Variables X , Y, and W can be optimized alter-
nately with the other variable fixed. The detailed deduction of this algorithm is too long and
out of the scope of this chapter. We refer the interested reader to the work in Ref. [93].

After the construction of background layer X by t-TNN, the final vessel layer can
be obtained by subtracting X from the original data D. This subtraction was done in
the logarithm domain such that the corresponding operation for original image data
would be division. The whole procedure of the t-TNN background completion step
is shown in Algorithm 2.
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4.5.3 Experimental results

4.5.3.1 Synthetic X-ray coronary angiography data

To accurately evaluate the performance of vessel intensity recovery, we constructed 10
synthetic XCA images which include ground truth background images (GTBL) and
foreground vessel layer images (GTVL). All the original 12 XCA sequences were
obtained from Ren Ji Hospital of Shanghai Jiao Tong University. Each sequence has
80 frames whose image resolution is 5123 512 pixels with 8 bits per pixel. All the
experiments were approved by our institutional review board.

To get GTVLs, we performed a vessel extraction algorithm similar to Section 4.2
on the real XCA data. Then some artifacts were manually removed from the extracted
rough vessel images to obtain the GTVLs. The GTBLs were the consecutive frames
selected from the real XCA data. Because an XCA image is the product of the vessel
layer and the background layer according to the X-ray imaging mechanism (see
Section 4.5.1), we multiplied a sequence of GTVLs to the clean regions of GTBLs
from a different sequence to obtain the synthetic XCA data. An example synthetic
image with GTBL and GTVL is shown in Fig. 4.7A.

4.5.3.2 Experiment demonstration

We performed experiments similar to the algorithm shown in Fig. 4.1 to illustrate the
effect of tensor completion on vessel intensity recovery. The real vessel segmentation
algorithm (see details in Ref. [11]) is different from that of Section 4.4 in Fig. 4.1, it
makes little influence on vessel intensity performances. We validated the performances
from the VRBC-t-TNN and other layer separation methods for comparison purpose.
The median subtraction method (MedSubtract) used by Baka et al. constructs a static
background layer image as the median of the first 10 frames of a sequence and subtract
it from all the frames [96]. Several open-source RPCA algorithms, including PRMF
[97], MoG-RPCA [51], IALM-RPCA, [5], and MCR-RPCA in Section 4.3 [5] were
tested. The proposed framework VRBC can use other matrix completion and tensor
completion methods to replace t-TNN. We tested some open source data completion
methods including PG-RMC [98], MC-NMF [99], ScGrassMC [100], LRTC [101],
and tSVD [102] as comparison, whose codes were obtained from Sobral’s library lrsli-
brary [103] and mctc4bmi [104].

4.5.3.3 Performance comparison

The layer separation results of the synthetic data are shown in Fig. 4.7. As can be seen,
all these layer separation methods can remove noises and increase the vessel visibility
to some extent. Among these algorithms, because MedSubtracted constructs a static
background layer image that does not change over time, the extracted vessel layer
image with lots of remaining noise was the worst among these extracted results. The
four RPCA-based methods achieved much better vessel extraction results with more
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noises being removed. Among these four RPCA-based methods, MCR-RPCA [5]
achieved the best vessel extraction results with the least residual artifacts. However,
though RPCA-based methods can nicely capture the vessel structures in the vessel
layer images, the vessel intensities were not fully extracted since obvious vessel resi-
duals can be observed in their resulting background layer images. This observation is
consistent with the fact that some contrast agents being pushed against the vessel wall
have reduced their flow rate and behaved low-rankness property, such that these con-
trast agents remained in the backgrounds after RPCA-based decomposition.

Figure 4.7 Examples of vessel layer extraction results from synthetic data [21]. Each group of results

contains a background layer image labeled 1 and a vessel layer image labeled 2. (a-0) Synthetic XCA

image. (a-1,2) Ground truth background layer and vessel layer image. (b)�(l) Layer separation results:

(b ) Med Subtract [83]. (c) PRMF [84]. (d) MoG-RPCA [49]. (e) IALM-RPCA [51]. (f) MCR-RPCA [5].

(g) VRBC-PG-RMC. (h) VRBC-MC-NMF. (i) VRBC-ScGrassMC. (j) VRBC-LRTC [21]. (k) VRBC-tSVD. (l) VRBC-t-

TNN [21].
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In contrast, the VRBC framework embedded within all the tensor-completion
methods greatly improved the performances of vessel extraction and intensity recov-
ery. The recovered vessel intensities were further compared to those from RPCA
algorithms. Among all these algorithms, the result images of VRBC-t-TNN achieved
the best visual performances. Both the background layer images and the vessel layer
images were visually appealing and seemed to be well recovered in terms of structure
and intensity recovery. To quantitatively measure the accuracy of vessel intensity
recovery, we directly calculated the differences between the extracted vessel layers and
the ground truths. The reconstruction error of vessels is defined as follow:

Erecon 5

P

ðx;yÞAV jIresultðx; yÞ2 Igroundtruthðx; yÞÞj
P

ðx;yÞAV Igroundtruthðx; yÞ
ð4:41Þ

where V denotes the vessel regions, Iresult and Igroundtruth denote the intensities of the
resulting vessel layer images and the ground truth vessel layer images, respectively. For
each synthetic XCA sequence, the Erecon of the whole sequence is calculated. Fig. 4.8
shows the general performances of different algorithms on the 10 synthetic sequences.

Figure 4.8 Erecon values in vessel regions on synthetic data [21].
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Erecon measured the vessel intensity difference between the separation result and
the ground truth. A small Erecon indicated an accurate vessel layer extraction. We can
see that VRBC framework achieved smaller Erecon values than other existing methods.
Among them, VRBC-t-TNN achieved the best performance. This Erecon evaluation
indicated that VRBC-t-TNN can accurately recover the intensities of contrast-filled
vessels from XCA images.

4.6 Conclusion

In this chapter, we demonstrated the entire framework to effectively extract the
contrast-filled vessels and their intensities from the complex and noisy backgrounds in
XCA sequences. To the best of our knowledge, this is the first work to perform such
complete work for the benefit of microcirculation analysis in minimally invasive vascu-
lar interventions. Current XCA-guided coronary artery revascularization via stent
implantation solely performs epicardial artery-based revascularization. However,
whether this artery revascularization could improve the distal microcirculation and
accordingly lead to a desired therapeutic effect on the acute myocardial ischemic heart
diseases is not easily evaluated in preo perative and postoperative assessment in current
vascular interventions. We hope our work could be helpful to appropriately assess the
microcirculation and other cardiovascular diseases by extracting and analyzing the het-
erogeneous XCA vessels.
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CHAPTER 5

Assessing coronary artery disease
using coronary computed tomography
angiography

Mina M. Benjamin, Marco Shaker and Mark G. Rabbat
Department of Cardiology, Loyola University Medical Center, Maywood, IL, United States

5.1 Introduction

Coronary artery disease (CAD) accounts for approximately one-third to one-half of the
total cases of cardiovascular disease, with ischemic heart disease as the number one cause
of death in adults from both low- and high-income countries [1,2]. Coronary computed
tomography angiography (CCTA) has been increasingly used as an imaging modality
for diagnosing CAD and as a first-line test in many scenarios. Technological advances in
CCTA acquisition and processing have allowed coronary artery assessment at a low
dose of radiation and high accuracy. CCTA also has prognostic implications for patient
management. CCTA stands out among other diagnostic modalities with an excellent
negative predictive value and an ability to image various stages of atherosclerosis.

5.1.1 The utility of CCTA in Coronary artery disease diagnosis and
prognostication

CCTA represents a widely available and well-tolerated examination that visualizes the
presence and extent of CAD noninvasively both in the acute and nonacute settings.
CCTA has the highest diagnostic accuracy for the detection of obstructive CAD in
major epicardial vessels as detected by invasive coronary angiography because of its
high sensitivity and phenomenally low rate of false negatives. CCTA accuracy has
markedly increased over time. Earlier studies showed high sensitivity (86%�100%) and
negative predictive value (93%�100%) for detection of significant stenosis compared
to invasive coronary angiography, with lower specificity and positive predictive values
(50%�90%) [3]. A pooled study of different reports showed sensitivity, specificity,
negative predictive value, and positive predictive value of 96%, 91%, 96%, and 91%,
respectively, for the 64 slice scanner [4]. Another meta-analysis reported a mean sensi-
tivity of 93% and specificity of 96% for stenosis detection by 64-slice CT on a per-
segment basis. On a per-patient basis, sensitivity was as high as 99% [5]. CCTA has
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shown an excellent correlation with coronary intravascular ultrasound (IVUS) in sev-
eral studies comparing the two modalities measurements of minimal lumen area and
plaque volume, in addition to identifying adverse plaque characteristics such as positive
remodeling, spotty calcifications, and low attenuation [6,7] (Fig. 5.1). In a meta-analysis
including 946 patients, CCTA had an excellent predictive value when compared
to IVUS, with a sensitivity of 90% and specificity of 92%. Plaque area and volume
were the same between IVUS and CCTA. CCTA overestimated the lumen area by
0.46 mm2, likely due to partial volume effects [8]. Another meta-analysis included
1360 patients from 42 studies that found no significant differences between CCTA
and IVUS measurements of the vessel lumen cross-sectional area, plaque area and vol-
ume, or percentage of area stenosis. The sensitivity and specificity of CCTA compared
to IVUS were 93% and 92%, respectively [9]. The emerging role of CCTA has
been acknowledged by the 2019 Guidelines of the European Society of Cardiology
recommending the use of CT as a first-line tool for the evaluation of patients with
stable chest pain with a class I, level of evidence B recommendation.

CCTA can also be of utility following invasive coronary angiography to differenti-
ate between true right coronary artery or left main artery lesions versus spasms during
catheterization. CCTA can also be used for defining bypass grafts not identified during
the invasive coronary angiogram [10].

CCTA also has an important prognostication value for identifying patients at low
risk for future major adverse cardiovascular events [11�14]. The CONFIRM
(Coronary CT Angiography Evaluation For Clinical Outcomes: an International

Figure 5.1 Noncalcified plaque and positive remodeling of the midleft anterior descending artery

(arrow).
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Multicenter Registry) registry was a large international multicenter study, which
included 14,064 patients at 12 centers and showed that CCTA predicts all-cause mor-
tality. The absence of CAD by CCTA was associated with a low rate of incident death
(annualized death rate: 0.28%) [15].

Another utility of the noncontrast portion of a CCTA is the ability to calculate a
coronary artery calcium (CAC) score. Also known as an Agatston score, a CAC score
can be used to risk-stratify patients for future development of cardiac events. CAC
scores are useful in identifying asymptomatic patients where more intensive preventa-
tive treatment regimens would be appropriate. The Multimodality Appropriate
Use Criteria for the Detection of Stable Ischemic Heart Disease guidelines from the
American College of Cardiology and American Heart Association (ACC/AHA) sug-
gested that CAC scoring may be appropriate in select patients who are asymptomatic
but at intermediate risk for CAD. CAC scoring alone is rarely appropriate in symp-
tomatic patients [16].

5.2 Patient selection

The ideal patient for CCTA would have an intermediate pretest probability (10%�
90%) for significant CAD (as defined by the Diamond-Forrester score) without estab-
lished CAD or in those with equivocal or nondiagnostic functional test results [17,18].
CCTA is also appropriate as the initial test in patients without known CAD who pres-
ent with chest pain or possible acute coronary syndrome when highly sensitive tropo-
nin assay testing and the clinical evaluation cannot confidently exclude acute coronary
syndrome [18]. CCTA should not be performed in patients who are unstable with
ongoing chest pain who have acute coronary syndrome since transporting them is
unsafe and CT suites are generally not equipped to deal with these patients [19,20].
CCTA can also be appropriate as an alternative to stress testing or invasive coronary
angiography in selected patients without previously known CAD who are diagnosed
with non-ST-elevation acute coronary syndrome with clinically low-risk presentation
(e.g., absence of heart failure, hemodynamic or electrical instability, or refractory
ischemic symptoms), and in whom there is a clinician or patient desire to avoid inva-
sive coronary angiography [21,22].

CCTA is generally not recommended in asymptomatic patients. CCTA is also not
typically recommended as a first-line test in patients with prior coronary artery revas-
cularization. For patients with prior percutaneous coronary intervention, stent material
often results in “blooming” on CCTA images, a phenomenon that can obscure a por-
tion of the coronary lumen within the stent and limit diagnostic accuracy. Patients
with stents also often have extensive coronary calcification that can negatively impact
diagnostic accuracy [23]. However, there may be clinical scenarios where it is useful to
guide patient management. CCTA is highly accurate for the evaluation of bypass graft
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patency and is considered an appropriate study when the patency of bypass graft con-
duits is the primary clinical question [24].

5.2.1 Other utilities of computed tomography angiography, that is,
other than in coronary artery disease

As mentioned earlier, CCTA protocols typically involve an initial noncontrast, low-
radiation dose phase. This noncontrast portion of the study can yield high-quality
data about cardiac anatomical structures that may not be as adequately visualized with
other noninvasive imaging modalities, for example, trans-thoracic echocardiography
or cardiac magnetic resonance imaging, including valvular abnormalities [25�27].
Functional assessment is also feasible with every retrospectively acquired ECG-gated
CCTA. Dedicated postprocessing tools are needed for image analysis. Despite the
inferior temporal resolution of CCT, previous studies have shown a close correlation
between end-diastolic, end-systolic LV volume, ejection fraction, and regional wall
motion abnormalities obtained by multislice CCT compared to two-dimensional
echocardiography [28].

CCT can identify intracavitary thrombi. In clinical practice, transesophageal echocar-
diography is recommended for this purpose, but it is an invasive procedure with a risk
of bleeding and esophageal perforation [29]. Recent meta-analyses have shown a high
sensitivity of CCTA in detecting thrombi in the left ventricle [30], and in the left atrial
appendage [31] even in the presence of a left atrial appendage occluder device [32].

CCTA can also be applied toward the diagnosis of coronary anomalies.
Professional guidelines from the ACC/AHA released in 2018 listed CCTA as a class I
indication for initial screening of adult patients with suspected congenital anomalous
coronary arteries of ectopic origin [33]. CCTA is also of utility in patients with con-
genital cardiac anomalies and is a class I indication study in patients with several con-
genital anomalies including suspected Williams syndrome, significant coarctation of the
aorta, supravalvular aortic stenosis, and anomalous pulmonary venous return [33].

5.2.2 CCTA technique and quality factors

CCTA technique has developed significantly over the last 20 years. As mentioned
above, CCTA protocols typically involve an initial noncontrast, low-radiation dose
phase for the delineation of cardiac structures and calculation of the CAC. A bolus
dose of iodinated contrast (typically 50�120 mL) is administered intravenously.
Nitroglycerin, typically sublingual tablet or spray is given approximately 5 minutes
prior to the examination to dilate the coronary arteries and facilitate assessment
of luminal narrowing. Patients should be screened for compliance to breath-hold
and heart rate stability. Depending on the temporal resolution of the scanner, patients
with irregular heart rate or a rate above a certain limit (typically 65 beats/min) are
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premedicated with beta-blockers both to improve image quality and to reduce radia-
tion exposure. Calcium channel blockers can also be used. Ivabradine, a selective and
specific inhibitor of the If current, which is one of the most important ionic currents
for regulating pacemaker activity in the sinoatrial node, is an alternative drug that has
been validated as an alternative to beta-blockers for reducing the heart rate prior to
CCTA. It can be used in conjunction with beta-blockers or exclusively in patients
with baseline systolic blood pressure , 100�110 mmHg, severe left ventricular dys-
function, peripheral vascular disease, or severe obstructive airway disease [34�38].

The acquisition of a CCTA is performed using ECG-gating either in a retrospec-
tive or prospective way [39]. The retrospectively ECG-gated approach captures the
heart throughout the whole cardiac cycle, acquiring images at multiple cardiac phases
and, thus delivering high-quality images even at high heart rates, yet at increased
radiation exposure compared to prospective modes. For prospectively acquired ECG-
gated scans, sequential and high-pitch helical techniques are available, which are cho-
sen depending on heart rate and rhythm, as well as patient habitus. The sequential
mode acquires images of different anatomic regions during preselected cardiac phases,
the so-called “step-and-shoot” method; whereas high-pitch helical scans cover the
entire heart with a single gantry rotation, so that the image is obtained in a single car-
diac cycle. The latter is associated with a drastic dose reduction to an average effective
dose of 2.2 milliSievert (mSv) [40,41]; scans with a dose less than 1 mSv have also
been shown to be feasible [42,43].

5.3 Spatial resolution

Spatial resolution is defined as the ability to distinguish two neighboring structures as
separated. Spatial frequency with the unit of “line pairs per centimeter” is used for
object dimension measurement. Spatial resolution improved from 0.5 with a 64-slice
CT to 0.4 mm with a 128-slice scanner, until 0.35 mm in a 320-slice CT scanner and
0.17 mm in 640-slice CT [44]. A basic requirement for adequate multiplanar recon-
struction is that the resolution is isotropic meaning that the resolution is equal in all
directions. Increasing the number of detector rows allows for covering the whole heart
in a single heart beat without moving the CT table; however, progressive deformation
of the reconstructed object is an issue in the peripheral regions of the field of view.
Correction algorithms have been developed to mitigate this issue through the years [44].

Detectors must have several features to deliver good diagnostic image quality: accu-
racy, dynamic range, stability, uniformity, speed of response, resolution, geometric
efficiency, detector quantum efficiency, and cross-talk. Filtering kernels can affect spa-
tial resolution. Convolution filters are applied to reduce the blurring that occurs with
back projection alone. Each convolution kernel uses the value of nearby pixels to cre-
ate a filtered profile. There are different types of kernel filters that can be roughly
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classified as standard, smooth, and sharp. The type of filter determines spatial resolution
and noise [45]. Iterative reconstruction starts from the images obtained from the fil-
tered back projection, generates new projection data that are compared to the original
ones, then noise corrections are made. This process is repeated (i.e., iterated) several
times. Iterative reconstruction has been shown to have a great utility in reducing radia-
tion dose while preserving good image quality [46,47].

5.4 Temporal resolution

Temporal resolution is the time needed to acquire the data to generate an image.
High temporal resolution is needed for CCTA scans to reduce respiratory motion arti-
facts and to overcome cardiac motion artifacts. Temporal resolution is affected by the
gantry rotation speed, image reconstruction (i.e., prospective vs retrospective trigger-
ing), pitch and postprocessing algorithm. Multisegment reconstruction techniques have
been introduced where some portions of projections from different heartbeats are
used; these data are then collected to compose a full reconstruction, reaching a higher
temporal resolution [44]. Another advancement came with the introduction of Dual
Source CT which allowed an instant doubling of temporal resolution. Newer genera-
tions of the Dual Source CT have allowed a high-pitch single-heartbeat acquisition
with the scan of the whole heart volume in a single cardiac cycle [47].

The pitch is another element to be considered; it corresponds to the speed of
motion of the CT table per rotation of the gantry, divided by the amplitude of the
detectors. A typical CCT pitch is between 0.2 and 0.4 depending on the heart rate of
the patient during the scan. Cardiac imaging in spiral mode requires low pitch because
high-quality 3D images with minimal artifacts require data overlap [48]. A high pitch
is not possible when using dual-source CT techniques, which are defined as acquisi-
tions of two separate datasets utilizing two different X-ray spectra energies [e.g., low
and high kilovoltage peak (kVp) spectra]. It has been shown to enhance diagnostic
accuracy, provide added value for more comprehensive diagnosis, improve image
quality, and/or reduce both radiation and contrast media requirements [47].

5.5 Technical issues in specific patient subgroups

As mentioned above, the amount of radiation needed has decreased significantly with
technical advances but may remain an issue in individuals with a higher body mass
index (BMI). Patients with a high BMI or with fat predominance in the upper portion
of the body may require higher values of kV and mA to obtain diagnostic images.
While there is a linear relationship between the dose delivered to the patient and the
tube current (mA), tube voltage (kVp) has an exponential relationship to the radiation
exposure [49]. Automatic exposure control is a technology that adapts the mA
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automatically according to the patient’s size, allowing up to a third in radiation dose
reduction. Another method for dose reduction in CCT is to decrease the tube voltage
(kVp). The main disadvantage of kV reduction is the potential reduction of diagnostic
accuracy and noise increase. This effect can be mitigated by an increased mA delivery
which increases tube power to an adequate level with a significant reduction of radia-
tion dose [50].

Coronary calcification is a major factor that influences the rate of evaluable arteries
by CCTA and its diagnostic accuracy resulting in a considerable rate of false-positive
studies [51]. CORE-64 study involved 371 patients who underwent CCTA and
cardiac angiography for detection of obstructive CAD. The diagnostic accuracy of
CCTA was reduced in patients with calcium scores of . 600 versus those with scores
, 600 Agatston units [3]. Although calcification clearly makes coronary evaluation
more difficult, even pronounced calcifications often do not hinder the evaluation of a
coronary segment if no motion artifacts are present. However, the presence of motion
artifacts makes calcified segments challenging to evaluate with confidence [52].

Another issue is in patients with irregular rhythms, most commonly atrial fibrilla-
tion. Only a few studies have investigated the diagnostic accuracy of CCTA in these
patient subgroups. The diagnostic accuracy of CCTA has been typically suboptimal,
particularly when high heart rate coexists with high variability [53,54]. However, with
the recent advances in CCTA hardware and software, sensitivity and specificity for
detection of CAD have been reported similar to in patients with no arrhythmias
[55,56].

5.5.1 The future of CCTA

The primary focus of recent advances has been the addition of a physiologic assessment
either by CT myocardial perfusion imaging (CTP) or by measuring the degree of flow
limitation, that is, CT-derived fractional flow reserve (FFRCT).

5.5.1.1 Computed tomography perfusion imaging

A perfusion study can be done using vasodilation-inducing drugs as adenosine, dipyri-
damole, or regadenoson. The premise of a vasodilator study is creating preferential
vasodilation by increasing myocardial blood flow during stress three to five times that
of resting myocardial blood flow and in case of coronary stenosis, the blood will pref-
erentially supply the normal vessel over the stenosed vessels [57]. CT Perfusion (CTP)
was first used to detect perfusion defects during rest but has evolved to detect perfu-
sion during stress with the recent advances in technology including the use of multide-
tectors with high temporal resolution, and less motion artifact [58�63]. Alternative
protocols include either rest followed by stress perfusion or stress perfusion first fol-
lowed by rest. It could be dynamic or static perfusion. The static depends on obtaining
data from the left ventricle at the peak myocardial enhancement at the first arterial
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pass. The images obtained during rest can be used to assess the coronaries. Images
depend on the comparison between the hypodense and normal myocardium. The
limitation of this technique is it can miss the perfusion defects if the ischemia is bal-
anced among the three vessels [64]. Dynamic perfusion depends on imaging of the
left ventricular myocardium overtime after the contrast bolus injection to create myo-
cardial time attenuation curves. It can be done with the table in the stationary position
with a wide detector CT scanner (i.e., 320 slice CT) or axial shuttle mode with dual-
source CT scanners [65]. Quantitative software for myocardial perfusion has been
developed as well [63]. In a substudy of the CORE320 (Coronary Artery Evaluation
Using 320-row Multidetector Computed Tomography Angiography and Myocardial
Perfusion) trial which included 381 patients who underwent both CTA-CTP and
SPECT myocardial perfusion imaging preceding invasive coronary angiography, the
prevalence of flow-limiting CAD defined by invasive coronary angiography with an
associated SPECT defect was only 45% and 23% in males and females, respectively.
Patient-based diagnostic accuracy defined by the area under the receiver operating
curve for detecting flow-limiting CAD was improved by CTA-CTP versus CTA
alone from 0.83 to 0.92 in females and from 0.82 to 0.84 in males [66].

The main limitations of dynamic CTP include heterogeneity of normal perfusion
values, underestimation of perfusion value compared to PET and CMR in addition to
significantly higher radiation doses needed. Dynamic and static radiation doses are
5�15 and 2�9 mSv, respectively [67�71].

5.5.1.2 Viability and fibrosis

Delayed enhancement imaging (performed 5�10 minutes after contrast injection)
with CCT is possible. The aim of this technique is viability assessment (i.e., the detec-
tion of necrosis, fibrosis, and microvascular obstruction). An infarcted territory can be
characterized based on hyper- and hypoenhancement on delayed enhancement images
signaling an infarcted territory or microvascular obstruction. In the case of hyperen-
hancement in acute infarction, membrane dysfunction lets iodine molecules pass into
the intracellular space where contrast accumulates. Hyperenhancement in scar tissue,
however, is believed to be caused by an increase of the intercellular space due to cell
necrosis. Microvascular obstruction, on the other hand, appears as hypoattenuation
due to blockage of capillaries caused by cell debris despite restored flow [72].

While focal myocardial scar tissue can be reliably detected on CT images, diffuse
myocardial fibrosis has mainly been quantified using MRI [73]. The idea behind both
techniques is the calculation of the extracellular volume fraction of the myocardium,
which is increased in myocardial fibrosis and associated with various cardiomyopathies
and heart failure [74]. For the calculation of ECV, HU attenuation values in the myo-
cardium and blood pool were measured in pre- and postcontrast images, and the ratio
of these changes (change in myocardial attenuation/change in blood pool attenuation)
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was set in relation with the patient's hematocrit level. CT-obtained extracellular vol-
ume values demonstrated a good correlation with MRI measures (r5 0.82) and were
elevated in patients with heart failure [74]. Contrast-enhanced dual-energy CT is also
being evaluated for the quantification of myocardial fibrosis by measuring overlay
attenuation values of the myocardium and blood pool on iodine attenuation maps.
Again, the results were comparable with MRI as the reference standard [75].

5.5.1.3 CCTA-derived FFR (FFRCT)

The Achilles heel of CCTA alone is not being able to define the hemodynamic signif-
icance of coronary lesions [76]. Invasive fractional flow reserve (FFR) measures the
pressures proximal to (aortic pressure) and distal to (guidewire pressure) stenotic lesions
at maximal flow and creates a pressure ratio, representing the proportion of flow across
that stenosis. Identifying patients with both anatomically and functionally significant
CAD before catheterization using noninvasive testing could dramatically reduce the
need for unnecessary invasive and downstream testing. FFRCT (HeartFlow, Redwood
City, CA) is a technology whereby machine learning has been utilized to construct
patient-specific models of blood flow from CCTA images allowing for a noninvasively
derived FFR (Fig. 5.2) [77,78]. The technology uses deep learning algorithms to
extract lumen boundaries from CCTA using an approach validated against OCT, and
it creates a patient-specific physiologic model based on form-function principles and
computational fluid dynamic analysis to compute the blood flow solution [79,80].

Several recent reports have examined the relationship between various CCTA-
derived plaque characteristics and the ability to predict ischemia, as measured by vari-
ous techniques including myocardial perfusion and FFR [81�83]. The NXT (Analysis
of Coronary Blood Flow Using CT Angiography: Next Steps) trial demonstrated
that the diagnostic accuracy of FFRCT [AUC: 0.90; 95% confidence interval (CI),
0.87�0.94] was significantly greater than that of CCTA alone (0.81; 95% CI,
0.76�0.87).[84] The PACIFIC (Prospective Comparison of Cardiac PET/CT,
SPECT/CT Perfusion Imaging and CCTA With Invasive Coronary Angiography)
study compared the diagnostic accuracy of various modalities using invasive 3-vessel
FFR as the gold standard and found that the AUC on a per-vessel basis was signifi-
cantly greater for FFRCT (0.94) compared to CCTA (0.83), SPECT (0.70), and PET
(0.87) (P, .001 for all) [85]. FFRCT is being investigated as a tool in clinical decision-
making. Rabbat et al. reported the safe deferral of invasive coronary angiography in
patients with stable CAD using a diagnostic strategy of FFRCT [86]. Ongoing prospec-
tive, pragmatic, randomized clinical trials such as PRECISE (Prospective Randomized
Trial of the Optimal Evaluation of Cardiac Symptoms and Revascularization) will
shed light on the role of using FFRCT as a diagnostic strategy for patients with sus-
pected CAD. FFRCT can also be used for virtual planning of percutaneous coronary
interventions. HeartFlow Planner has been approved by the Food and Drug
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Administration as a real-time virtual modeling tool for CAD intervention. HeartFlow
Planner provides luminal remodeling using computer software enabling recalculation
of the FFR after virtual removal of coronary artery stenoses and prediction of post-
PCI FFRCT [87,88].

Figure 5.2 Example of FFRCT report showing no flow-limiting disease in the right coronary, border-

line flow-limiting disease in the left anterior descending (FFRCT5 0.79), and flow-limiting disease in

the circumflex (FFRCT5 0.56) coronary arteries. There is a lesion in the first diagonal artery that is

not flow-limiting (FFRCT5 0.86). The cutoff for normal FFRCT is 0.8 with borderline or grey zone

values between 0.75 and 0.8.
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5.6 Clinical trials comparing CCTA to other modalities

Landmark trials, including the Prospective Multicenter Imaging Study for Evaluation
of chest pain (PROMISE) and Scottish Computed Tomography of the Heart
(SCOT-HEART), have contributed to a better understanding of how CCTA may
play a role in more efficient management and improved health outcomes in patients
with suspected CAD.

The PROMISE trial recruited 10,003 symptomatic stable outpatients who were
due to undergo noninvasive investigation for suspected CAD. Participants were ran-
domized to undergo either anatomical assessment with CCTA or functional testing
with exercise electrocardiography, stress echocardiography, or radionucleotide perfu-
sion imaging. The primary outcome of the PROMISE study was a composite of all-
cause mortality, myocardial infarction, hospitalization for unstable angina, and major
complications of cardiovascular procedures or diagnostic testing. At 12 months of
follow-up, the risk of death or nonfatal myocardial infarction was lower in the CCTA
group than in the functional imaging group [hazard ratio (HR), 0.66, 95% CI,
0.44�1.00, P5 .049). However, at 25 months of follow-up, there was no difference
in the primary outcome between the two groups (events 3.3 vs 3.0%, HR, 1.04,
95% CI, 0.83�1.29, P5 .75). PROMISE showed that CCTA is a safe alternative to
functional testing in a low-risk population with similar outcomes in both groups after
2 years of follow-up [89].

The SCOT-HEART trial randomized 4146 outpatients with suspected angina due
to CAD to standard care or standard care plus CCTA. Participants were recruited from
cardiology outpatient clinics. The primary endpoint of the SCOT-HEART trial was
the certainty of diagnosis of angina pectoris secondary to significant CAD at 6 weeks.
At 6 weeks, the diagnosis was changed in 23% of patients undergoing CCTA com-
pared to 1% in the standard care group. CCTA improved the certainty of the diagnosis
for both the presence of CAD and the diagnosis of angina due to CAD (RR 2.56 and
1.79, respectively). CCTA increased the frequency of the diagnosis of CAD (RR
1.09). At 1.7 years of follow-up, the CCTA group had a 38% lower rate of fatal and
nonfatal myocardial infarction compared to the control group, but this difference did
not quite reach statistical significance (HR, 0.62, P5 .0527) [90] The overall event rate
was low, similar to the PROMISE study, occurring in just 2% of participants.
However, in a post hoc landmark analysis censored to the median time of treatment
alteration (50 days), there was a 50% reduction in fatal and nonfatal myocardial infarc-
tion in the CCTA group (HR, 0.50, P5 0.020) [91]. At 5 years follow-up, the rate of
the primary endpoint was lower in the CTA group than in the standard care group
(2.3% vs 3.9%). Although the rates of invasive coronary angiography and coronary
revascularization were higher in the CCTA group than in the standard care group in
the first few months of follow-up, overall rates were similar at 5 years. More preventive
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therapies were initiated in patients in the CCTA group (OR 1.40), as were more anti-
anginal therapies (OR 1.27). There were no significant between-group differences in
the rates of cardiovascular or noncardiovascular deaths or deaths from any cause [92].

Another study assessed 3306 patients undergoing CCTA versus 2752 who under-
went routine care. The incidence of acute coronary syndrome and repeated ER visits
decreased significantly in CCTA arm (RR 0.26 and 0.58, respectively) compared to
regular care [93]. A similar study by Foy et al. of 20,092 patients concluded that
CCTA showed reduced MI but higher coronary revascularization, with no statistically
significant difference for death or cardiac hospitalization [94]. CTA was also superior
to functional testing as a first-line strategy in symptomatic patients with diabetes in the
PROMISE trial [95].

A meta-analysis of four randomized controlled trials including 2567 patients pre-
senting to the emergency department with chest pain concluded that patients with
CCTA were more likely to undergo revascularization, with an OR of 1.88 with a
reduced time to diagnosis by 7.28 hour and reduction of ED cost by $680 [96].
Another meta-analysis by Hulten et al. included 3266 patients in the ED found that
CCTA had similar mortality, incidence of MI, or rehospitalization compared to usual
care. The length of stay and the cost of care were decreased with CCTA [20].

5.7 Conclusion

As detailed above, with the technical advances in CCTA, it is now possible to obtain
an accurate anatomic assessment of the coronary arteries with an excellent negative
predictive value and prognostic information. CCTA also offers valuable information
about different cardiac structures and major vessels. Patient selection and adequate
preparation are key to obtaining interpretable studies. The newer technologies specifi-
cally FFRCT and CTP are promising of providing functional information pertaining to
the degree of myocardial ischemia and the flow-limiting nature of atherosclerotic
lesions, but more validation studies and some technical advances are needed before
these technologies are ready for prime time.
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CHAPTER 6

Multimodality noninvasive cardiovascular
imaging for the evaluation of coronary
artery disease

Chris Anthony, Reza Reyaldeen and Bo Xu
Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold
Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, Unites States

6.1 Introduction

Coronary artery disease (CAD) is highly prevalent and is associated with significant
morbidity and mortality [1]. Due to its prevalence and the adverse impact on the
well-being and health resources of the community at large, accurate and expedient
diagnosis of flow-limiting CAD is of paramount importance [1]. In addition to coro-
nary artery anatomy and morphology, functional evaluation of the adequacy of myo-
cardial perfusion and myocyte metabolism are of paramount importance, as patients
with both anatomically and functionally significant stenoses have been demonstrated
to benefit from revascularization [2]. In a study of 541 patients, who were referred for
cardiac evaluation and underwent both coronary cardiac CT (CCT) and myocardial
perfusion imaging (MPI) [2], CCT emerged as an independent predictor of events
with an incremental prognostic value to MPI with an annualized hard event rate (all-
cause mortality and nonfatal infarction) in patients with none or mild CAD (CCT
,50% stenosis) of 1.8% versus 4.8% in patients with significant CAD (CCT $ 50%
stenosis). Patients who had either an abnormal or normal MPI result were three times
as likely to suffer from an adverse event [2]. MPI and CCT were synergistic, as the
authors demonstrated that combined use resulted in significantly improved prediction
of adverse outcomes with a P-value of ,.005 [2].

While the severity of ischemia is often related to the degree of flow-limiting stenosis,
this correlation is not always linear [3]. The presence of collateral circulation distal to the
site of flow-limiting coronary artery stenosis may result in false-negative testing despite
the presence of downstream ischemia, distal to the site of stenosis. The phenomenon of
collateralization further highlights the importance of functional assessment of CAD to
better guide treatment decisions made by treating clinicians to endure optimal benefit
from revascularization, be that percutaneous or surgical [4]. The ultimate goal of a multi-
modality imaging approach to the assessment of CAD is to clearly outline flow-limiting
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CAD and its physiologic flow dynamic related implications, as opposed to purely ana-
tomic information which is often the case when only one modality is used. A combined
multimodality approach enables patients with actual flow-limiting CAD to be better strat-
ified with a more personalized evidence-based approach to optimal risk factor modifica-
tion therapy and ultimately revascularization strategy.

A diverse range of multimodality cardiovascular imaging techniques are available
for the evaluation of CAD, including stress echocardiogram (TTE), cardiac computed
tomography (CCT), stress cardiac magnetic resonance imaging (CMR), single-photon
emission computed tomography (SPECT), or a combination of positron emission
tomography (PET) and CT or PET with magnetic resonance imaging (MRI). MPI is
a representation of the regional myocardial blood flow and the metabolic activity of
myocytes as a functional marker of adequate perfusion.

The goal of this chapter is to clearly outline the different noninvasive imaging
modalities that include stress TTE, CCT, stress CMR, SPECT, PET, and fusion imag-
ing for the evaluation of CAD.

6.2 Ischemic cascade

Myocardial ischemia occurs in a sequence of pathophysiologic events, in which various
markers of myocyte dysfunction can be observed in a well-defined time sequence [5].
The cascade of events are characterized by reduced left ventricular (LV) compliance or
diastolic dysfunction, a reduction in myocardial contractile function, increased end-
diastolic pressure, electrocardiogram signals of myocardial ischemia specifically ST-
segment changes, and lastly clinical symptoms such as angina or shortness of breath on
exertion (Fig. 6.1). Myocardial ischemia is caused by insufficient blood flow between

Figure 6.1 The ischemic cascade demonstrating the sequence of pathophysiologic events as

detected by various imaging modalities.
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the subendocardial and subepicardial layers, which results in myocyte dysfunction and
consequent mechanical and contractile dysfunction [5].

The concept of the ischemic cascade is a key concept in allowing clinicians to bet-
ter appreciate the different role various imaging and stress techniques play in making
the diagnosis of flow-limiting CAD and consequent myocardial ischemia. There are
strengths and weaknesses to the various modalities, which highlight the importance of
answering a specific clinical question, as evidenced by the fact that subtle changes in
myocardial function form the basis of various new physiologic markers for the detec-
tion of ischemia, namely, the demonstration of a reduction in coronary flow reserve
(CFR) irrespective of the imaging modality used [6].

Myocardial ischemia as described within the ischemic cascade often manifests as
inducible regional or global myocardial dysfunction, depicted by abnormal ventricular
cavity size and thickening of the myocardium at peak stress [6,7]. In the absence of
CAD, CFR can be reduced due to microvascular disease or insufficient blood flow at
the level of the microcapillary beds, uncontrolled hypertension which can result in
reduced myocyte perfusion or LV hypertrophy which can once again impact the
microcirculation within the myocardium [8�10]. These common clinical entities are
important confounders in all diagnostic tests for the detection of myocardial ischemia
and must form part of the differential diagnosis in all positive imaging tests.

6.3 Exercise stress echocardiography

The exercise stress echocardiogram is a combination of cardiac ultrasound-based tomo-
graphic imaging exercise-induced “stress” as per the various stress protocols that have
been standardized and widely incorporated into global practice such as the Bruce pro-
tocol or the modified Bruce protocol (Fig. 6.2; Table 6.1) [11]. During stress echocar-
diography clinicians utilize qualitative visual assessment for wall-motion abnormality
and concurrent reduction in LV chamber size during peak exercise for the detection
and exclusion of flow-limiting CAD-induced myocardial ischemia [11,12]. This quali-
tative approach is made more reproducible by the assignment of various descriptions
of wall motion abnormality at peak exercise, with terms such as hypokinesis, akinesis,
or dyskinesis often used as nomenclature to describe areas of dysfunction within the
myocardium.

The American Society of Echocardiography advocated for a more quantitative and
reproducible approach to the grading of wall motion abnormality during stress echo-
cardiogram, with the introduction of a 17 segments model [11]. The ASE advocates
that each segment in this 17 segment model be assigned a regional wall motion score
from 1 to 4, with 1 being normal, 2 being hypokinetic, 3 being akinetic, and 4 being
dyskinetic [11]. This score can then be tabulated as an index [12]. More advanced
quantitative methods include determination of LV volumes in diastole and systole
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from which stroke volume and ejection fraction can be calculated, evaluation of diastolic
dysfunction at peak exercise and strain which will be described further in this chapter [13].

Stress echocardiography has formed the backbone for functional ischemic testing
due to its high sensitivity and specificity, as evidence by a pooled analysis of studies of
1849 patients by Schuijf et al. [14], who demonstrated a sensitivity and specificity of
84% and 82%, respectively, for the detection of flow-limiting CAD [14]. There have
been several studies that have reported a higher sensitivity for detecting patients with
multivessel CAD as opposed to a single vessel disease [15]. The literature has defined
70% stenosis as clinically significant and flow-limiting, resulting in improved sensitivity
but lower specificity for the detection of flow-limiting CAD [16].

Exercise stress echocardiography is preferred for patients who are physically capable
of achieving an adequate level of exercise for the accurate evaluation of flow-limiting
CAD [11].

6.4 Pharmacologic stress echocardiography

Pharmacologic stress testing with either dobutamine or vasodilator can also be utilized
for the detection of myocardial ischemia when a patient is incapable of exercising

Figure 6.2 (A) Resting echocardiography three-chamber view shows normal wall thickening in sys-

tole (bottom panel). (B) Following stress, there is hypokinesis of the mid anteroseptum and apical

segments (white arrows bottom panel). Note also the lack of relative reduction in overall left ven-

tricular end-systolic cavity size, consistent with LAD territory ischemia (C) This panel demonstrates

the corresponding global longitudinal strain plots at rest (top panel) and stress (bottom panel),

highlighting a reduction in peak global longitudinal strain following stress.
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capacity due to physical or physiologic limitations [11]. Dobutamine stress echocardi-
ography (DSE) is the most commonly used method for the assessment of myocardial
viability in the setting of determining if revascularization will indeed salvage or
improve myocardial function in a hibernating myocardium [11]. Dobutamine is usu-
ally delivered in graded doses starting at 5 µg/kg per minute and is increased at
3-minute intervals if tolerated by the patient or in the absence of dobutamine-induced
hypertension or dysrhythmia [11]. When target heart rate cannot be achieved with
dobutamine alone, atropine can be added to increase the sensitivity of DSE, particu-
larly in patients taking beta-blockers and in those with single-vessel disease [11].

The diagnostic accuracy of DSE was evaluated in 141 patients who underwent
coronary arteriography within 2 weeks of DSE [17]. All patients were being evaluated
for known or suspected CAD. Marcovitz and Armstrong [17] demonstrated that DSE
had a sensitivity of 96% and a specificity of 66% for the detection of flow-limiting
CAD. DSE had a sensitivity of 87% and specificity of 91% for the exclusion of
flow-limiting CAD if there was normal resting wall motion, which was the case in
53 patients in the study cohort [17].

Eleven studies (749 participants) met the inclusion criteria. The sensitivity of DSE
varied from 1.7% to 93.8%, and specificity, from 54.8% to 98.8%. Pooled sensitivity

Table 6.1 Various approaches of stress echocardiography in coronary artery disease.

Exercise stress

echocardiogram

Dobutamine stress

echocardiogram

Myocardial

perfusion stress

echocardiogram

Suitability Patients who are
capable of attaining
adequate level of
exercise for
exclusion of CAD

Patients who are
unable to
exercisePatients who
require myocardial
viability assessment

Patients who
have poor
endocardial
definition

Contraindications • Unstable angina
• Hypertensive
urgency

• Serious cardiac
dysrhythmia

• Severe aortic stenosis

• Significant LVOT
obstruction

• Unstable angina
• Serious cardiac
dysrhythmia

• Hypertensive
urgency

• Unstable angina
• Serious cardiac
dysrhythmia

• Hypertensive
urgency

Limitations • Left bundle branch
block

• Cardiac pacing
• Poor acoustic
imaging windows

• Left bundle branch
block

• Cardiac pacing
• Poor acoustic
imaging windows

• Left bundle
branch block

• Cardiac pacing
• Poor acoustic
imaging
windows

Note: CAD, Coronary artery disease.
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was 60.2% (95% confidence interval (CI), 33.0%�82.3%) and specificity 85.7% (95%
CI, 73.8%�92.7%). DSE had an overall diagnostic odds ratio (OR) of 9.1 (95% CI,
4.6�17.8), positive likelihood ratio of 4.1 (95% CI, 2.8�6.1), negative likelihood ratio
of 0.47 (95% CI: 0.23�0.73), and area under curve of 0.73 [18].

6.5 Myocardial perfusion stress echocardiography

Myocardial perfusion stress echocardiography (MPSE), which utilizes ultrasound
enhancing agents (UEA) during exercise stress echocardiography, improves the detec-
tion of ischemia, as perfusion abnormalities often occur before regional dysfunction
within the myocardium, once again as depicted in the ischemic cascade [19]. In addi-
tion, the use of UEA during stress echocardiography improves the sensitivity for detec-
tion of ischemia and improves prediction of risk, as it aids the visual appreciation of
focal and often subtle areas of regional dysfunction within the myocardium at peak
exercise [19]. MPSE with UEA can be used in both exercise and DSE [20]. MPSE
may also have particular advantages in improving sensitivity in the context of resting
wall motion abnormalities and confounders that make interpretation of regional wall
motion abnormalities even more challenging such as conduction delays or dyssyn-
chrony due to left bundle branch block (LBBB) [21]. In addition, the use of UEA and
perfusion enables a more parametric evaluation of myocardial perfusion and can also
be used to appreciate areas of microvascular obstruction and/or early ischemic dys-
function [22].

In a study by Porter et al. [23] of 100 patients who were referred for invasive coro-
nary angiography (ICA) and had myocardial contrast echocardiography, the sensitivity
and specificity for the detection of a concurrent region of impaired myocardial perfu-
sion that corresponded to an anatomic .50% diameter stenosis was 80% and 74%,
respectively [23]. This is a useful supplementary technique, however, due to the time
requirement, it is not often performed.

6.6 Left ventricular strain in exercise stress echocardiography

Combining stress echocardiography with strain analysis is a novel and promising tech-
nique for the detection of subclinical cardiac dysfunction due to myocardial ischemia
that is not apparent on visual assessment of myocardial recruitment at peak exercise
[24,25]. In a study of 50 healthy adolescents and young adults, von Scheidt et al. [25]
demonstrated that strain and strain rate (SR) increased during progressive exercise stress
[25]. The authors reported that the mean longitudinal strain was 220.4%6 1.3%,
SR 21.16 0.15/s at rest, where the mean heart rate was 79.46 12.0 beats/min,
increasing to 222.6%6 1.6% and 21.56 0.16/s at low stress level at a heart rate of
117.16 8.7 beats/min and 223.7%6 1.1% and 21.96 0.29/s at submaximal stress
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level at a heart rate of 154.26 7.0 beats/min, respectively, returning to 220.6%6 1.4%
and 21.26 0.16/s postexercise at a heart rate of 90.16 9.4 beats/min [25]. The authors
also noted that interobserver variability for strain was acceptable even during submaximal
stress [25]. Further studies on the comprehensive assessment of segmental ventricular
strain at rest and during a standardized exercise are necessary for the creation of accepted
and validated normal and abnormal thresholds, however, represent a promising
additional tool in the evaluation of flow-limiting CAD.

6.7 Limitations of stress echocardiography

The pitfalls with stress echocardiography include suboptimal imaging windows resulting in
poor endocardial definition of dropout of wall segments [12]. This limitation can be aided
with the utility of UEA for the improvement of endocardial border definition [12].

The development of global ventricular dysfunction should increase the interpreter’s
suspicion of multivessel disease. The detection of single-vessel stenosis is also challenging,
as the ischemic region will need to incorporate a substantial portion of the myocardium
to enable detection of a regional abnormality, which may be underappreciated with distal
disease or collateral supply to an occluded arterial bed. The identification of ischemia
within preexisting or baseline areas of resting wall motion abnormalities is challenging
and may require the administration of pharmacological agents to demonstrate a biphasic
response for the confirmation of inducible ischemia within an infarct zone.

Baseline electrical conduction abnormality such as LBBB or significant intra- or
interventricular conduction delay resulting in mechanical dyssynchrony may result in
added difficulty in accurately assessing myocardial recruitment at peak exercise. Xu
et al. have proposed an additional algorithm that incorporates various multimodality
imaging techniques to aid clinicians with navigating this difficult clinical conundrum
[26]. This impact of LBBB on the diagnostic accuracy of exercise stress echocardiogra-
phy is further highlighted in a study of 191 consecutive patients with LBBB undergo-
ing exercise stress echocardiography [27]. Of 62 patients who had demonstrated
abnormal LV contractile response to exercise and subsequently underwent confirma-
tory anatomic imaging of the coronary arteries, only 29 had significant flow-limiting
CAD, conferring an overall suboptimal specificity for the detection of significant CAD
in the setting of LBBB of 21% and accuracy of 52% [27].

6.8 Computed tomography coronary calcium score

CT coronary artery calcium scores (CAC) is a quantitative imaging technique that is used
for the screening of risk for adverse cardiac events in asymptomatic individuals (Fig. 6.3)
[28,29,30]. CAC or the Agatston method is defined as highly attenuated lesions above a
threshold of 130 Hounsfield units with an area of $ 3 pixels on noncontrast-enhanced
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CCT [31]. The CAC cut-points that are often used for the purpose of stratification in cat-
egorizing the risk of CAD: 0 (very low), 1�99 (mild), 100�400 (moderate), .400
(severe) based on large prospective observational studies [29,30].

CAC is highly predictive of future risk of adverse cardiac events [29,30]. Nasir
et al. [30] demonstrated that in a study population of 4758 participants, patients who
had a CAC score of 0 was associated with an extremely low adverse cardiac event rate
of 1.5 per 1000 person years [30]. Sarwar et al. [32] conducted a meta-analysis of 49
studies totaling 90,000 patients over a period of 18 years, to evaluate the diagnostic
and prognostic performance of a zero CAC score in asymptomatic and symptomatic
individuals. In their analysis, only 146 of 25,903 patients without CAC experienced a
cardiovascular event, providing evidence that a zero CAC score is associated with a
very low risk of future cardiovascular events [32].

This has been incorporated into the American College of Cardiology (ACC)
guidelines document for the management of blood cholesterol, where if the coronary
calcium score is zero, it is reasonable to withhold statin therapy and reassess in 5�10
years in the absence of higher-risk conditions, such as diabetes mellitus, family history
of premature cardiac events, or cigarette smoking. In addition, if the CAC score is
1�99, as per the guidelines statement, it is reasonable to initiate statin therapy for
patients who are $ 55 years of age and lastly, if the CAC score is 100 or higher or in
the 75th percentile or higher, it is reasonable to initiate statin therapy [33].

Figure 6.3 (A) Example of a patient with a calcium score of zero. (B) In comparison, this patient

has calcification in the left anterior descending artery (white arrow) and left circumflex artery (yel-
low arrow), with a total calcium score of 1008, placing the patient at the 90th percentile for age

and gender.
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In addition, Miedema et al. [34] and Ajufo et al. [35] demonstrated that CAC score
can be used for guiding the prescription of aspirin for primary prevention of adverse
cardiac events. Participants with CAC score $ 100 had a benefit from aspirin use,
while individuals with a zero CAC score would likely experience more harm than
benefit [34,35]. In 4229 participants from the Multi-Ethnic Study of Atherosclerosis
who were not on aspirin at baseline and were free of diabetes mellitus, individuals
with CAC $ 100 had an estimated net benefit with aspirin regardless of their tradi-
tional risk status (estimated 5-year number needed to treat 173 for individuals ,10%
FRS and 92 for individuals $ 10% FRS, estimated 5-year number needed to harm of
442 for a major bleed) [34]. Conversely, individuals with zero CAC had unfavorable
estimations (estimated 5-year number needed to treat of 2036 for individuals ,10%
FRS and 808 for individuals $ 10% FRS, estimated 5-year number needed to harm
of 442 for a major bleed) [34].

In 2191 participants from the Dallas Heart Study cohort who were free from ath-
erosclerotic cardiovascular disease and not taking aspirin at baseline, higher CAC cate-
gories (CAC 1�99 and $ 100 vs CAC 0) were associated with both ASCVD and
bleeding events [hazard ratio (HR), 1.6; 95% CI, 1.1�2.4; HR, 2.6; 95% CI,
1.5�4.3; HR, 4.8; 95% CI, 2.8�8.2; P , .001; HR, 5.3; 95% CI, 3.6�7.9;
P , .001], but aspirin use was estimated to result in net harm in individuals at low
(,5%) and intermediate (5%�20%) 10-year ASCVD risk and net benefit in those at
high ($20%) ASCVD risk [35].

Apart from its proven predictive role, CAC scoring is easily performed, noninva-
sive, has very low radiation, is highly reproducible, and provides a quantitative assess-
ment based on the absolute score and risk percentiles.

6.9 Limitations of coronary artery calcium

The severity of calcium deposition in a particular vessel is not considered in risk pre-
diction, as the overall degree of CAC is predictive of the risk of adverse events [36].

Regional distribution of CAC can be very heterogeneous from the total CAC
score [36].

CAC may result in unnecessary referral for invasive correlation due to the inability
to detect flow-limiting disease, as it is a measure of extraluminal calcification and not
specifically intraluminal obstruction. CAC can also miss significant noncalcified,
cholesterol-based CAD, which can potentially be flow-limiting [36].

6.10 Computed tomography coronary angiogram

Cardiac CT angiogram (CCTA) in addition to the calculation of a CAC enables direct
anatomic visualization of CAD in coronary arteries, with low radiation exposure

155Multimodality noninvasive cardiovascular imaging for the evaluation of coronary artery disease



(Fig. 6.4) [37]. Improvement in CCTA scanner technology has improved the speed
and diagnostic accuracy, enabling the acquisition of large data sets within seconds and
with excellent spatial resolution [38]. CCTA also enables the assessment of atheroscle-
rotic plaque burden and plaque characteristics noninvasively and has been reported to
be comparable to the invasive intravascular ultrasound that is performed during inva-
sive coronary angiogram [39].

The ACCURACY or Assessment by Coronary Computed Tomographic
Angiography of Individuals Undergoing ICA trial by Budoff et al. [40] was the first
prospective multicenter trial to evaluate the diagnostic accuracy of CCTA in symp-
tomatic patients without known CAD [40]. In the 230 patients that were studied and
had both CCTA and ICA, CCTA demonstrated high accuracy for the detection of
CAD with greater than 70% luminal stenosis with a high negative predictive value
(NPV) of 99% [40].

A prospective study of 360 symptomatic patients with acute and stable angina by
Meijboom et al. [41] reported a sensitivity, specificity, and both positive predictive
value (PPV) and NPV for the detection of CAD which the authors defined as
greater than 50% of the luminal diameter of 99%, 64%, 86%, and 97%, respectively.
Both studies highlight the high sensitivity and NPV of CCTA in the evaluation of
CAD confirming the safety of a CCTA-based screening strategy for the evaluation
for CAD [42].

Figure 6.4 (A) Computed tomography coronary angiogram demonstrating no atherosclerotic dis-

ease (this image shows a patient left main and proximal LAD). (B) This patient has evidence of

mixed plaque and spotty calcification (white arrow) in the proximal LAD causing high-grade steno-

sis (. 70%) extending into the distal left main. LAD, Left anterior descending artery.
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The SCOT—HEART study, a multicenter prospective open-label randomized
study of 4146 patients with stable angina, demonstrated that CCTA in addition to
standard care, with subsequent changes in management, resulted in a statistically signif-
icant reduction in death from CAD or nonfatal myocardial infarction, driven by non-
fatal myocardial infarction events, than standard care alone at 5 years of follow up
[43]. They did not find that CCTA increased the use of angiography or coronary
revascularization [43]. The findings also raise the possibility that CCTA detects patients
with nonobstructive lesions to target with preventative therapy that would be other-
wise missed by standard evaluations, which may mitigate downstream cardiac events
due to earlier detection and optimal risk reduction.

The Prospective Multi-Centre Imaging Study for Evaluation of Chest Pain
(PROMISE) trial, a parallel randomized study of 10,003 patients, compared clinical
outcomes in symptomatic patients evaluated using CCTA or functional testing with
either exercise electrocardiography, nuclear stress testing, or stress echocardiography
[44]. The adjusted HR for a CCTA strategy, compared to a composite of all the
aforementioned functional testing modalities was 1.04 (95% CI, 0.83�1.29), with
adjustment for age, sex, and cardiovascular risk factors [44]. Douglas et al. also demon-
strated a trend toward reduced rates of adverse clinical events at 12 months for indivi-
duals undergoing CCTA. The data from the PROMISE trial demonstrate that an
initial strategy of CCTA as an index investigation is comparable to outcomes obtained
with an initial strategy of functional testing [44].

The prognostic value of CCTA for predicting adverse cardiac outcomes was dem-
onstrated by utilizing data from the Coronary CT Angiography Evaluation for Clinical
Outcomes:

International Multicenter (CONFIRM) registry study, where Min et al. [45]
examined the all-cause mortality in relation to CAD severity in 24,775 patients under-
going $ 64-detector row CCTA without known CAD using the CONFIRM registry
[20]. In risk-adjusted analysis, both per-patient obstructive (. 50% stenosis) (HR,
2.60; 95% CI, 1.94�3.49; P, .0001) and nonobstructive (HR, 1.60; 95% CI,
1.18�2.16; P5 .002) CAD conferred increased risk of mortality compared with
patients without evidence of CAD [45]. These data bring to light the importance of
nonobstructive CAD and its strong relationship with adverse cardiac outcomes.

The ACC recommended the use of functional testing for patients who are able to
exercise, while CCTA can be considered for patients who are able to exercise but
have an uninterpretable electrocardiogram [46]. The British National Institute for
Health and Care Excellence guidelines have updated recommendations to state that
the majority of patients with stable angina should be investigated with an anatomical
imaging test, namely, CCTA [47]. Functional tests, such as stress echocardiography,
have been downgraded as second-line investigations in patients who cannot have a
CCTA or when CCTA is inconclusive [47].
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The European Society of Cardiology (ESC) recommends the use of functional tests
or CCTA as the first-line investigations in symptomatic patients when obstructive
CAD cannot be excluded by clinical assessment [48]. The ESC Task Force comment
that CCTA is preferable in patients with a lower range of clinical likelihood of CAD
and characteristics associated with good image quality. The stance for the use of func-
tional testing is further outlined in their guideline document by citing the better speci-
ficity of functional testing in the evaluation for flow-limiting CAD [48].

6.11 Limitations of computed tomography coronary angiogram

One of the main limitations of CCTA is the distinction of flow-limiting disease in
patients who have densely calcified plaque. A high degree of extra-luminal calcifica-
tion can lead to “blooming artifact” which often results in the segment of coronary
artery being deemed noninterpretable [49]. This reduces the overall sensitivity of
CCTA for the detection of CAD [49].

CCTA imaging often requires heart rates within a narrow range and the absence
of dysrhythmia for optimal image quality [49]. Retrospective imaging acquisition can
be used in these patients; however, this comes at the cost of increased radiation dose
and exposure [49]. In addition, CCTA requires the use of exogenous contrast agents,
which may be a contraindication or exclusionary criteria for patients with renal
impairment or contrast-related hypersensitivity reactions.

6.12 Computed tomography in combination with single-photon
emission tomography

SPECT imaging studies provide added diagnostic accuracy for detecting significant
CAD compared to CCTA alone, by the addition of a functional element to the evalu-
ation of stenosis (Table 6.2) [50]. In addition, SPECT imaging provides three-
dimensional evaluation of the heart and coronary vessels, which is then fused with CT
images resulting in increased specificity for the detection of flow-limiting CAD in
comparison to CT alone [51]. In the United States, MPI is the most commonly used
imaging modality, with an estimated 9 million stress perfusion studies performed annu-
ally [52]. This has been reviewed recently in detail by Chetrit et al. [53].

A study by Sato et al. [54] demonstrated that coronary artery segments that were
uninterpretable due to severe calcification, motion artifacts, and/or poor opacification
on CT when combined with SPECT improved specificity and the PPV for the detec-
tion of flow-limiting CAD. SPECT/CT imaging may also provide better sensitivity
than SPECT alone as demonstrated by side-by-side analysis of SPECT and coronary
CT images in patients with multivessel disease [55].
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In addition, CT/SPECT imaging helps reduce unnecessary downstream ICA and
improves the sensitivity of SPECT alone [55]. In keeping with this, guidelines advo-
cate for the addition of a functional test in patients who have an undefined degree of
stenosis on CCTA before referral for invasive anatomical evaluation of CAD [56].

The combination of CT and SPECT has additional prognostic value, as demon-
strated by a study by van Werkhoven et al. [2], where 517 (96%) patients with an
interpretable MSCT, significant CAD (MSCT $ 50% stenosis) was detected in 158
(31%) patients, and abnormal perfusion summed stress score (SSS): $ 4 was observed
in 168 (33%) patients. During follow-up (median 672 days; 25th, 75th percentile: 420,
896), an event occurred in 23 (5.2%) patients [2]. A normal MPI defined by the
authors as a SSS ,4 and an abnormal MPI defined by the authors as a SSS $ 4 were
associated with an annualized hard event rate of 1.1% and 3.8%, respectively [2]. Both
MSCT and MPI were synergistic, and combined use resulted in significantly improved
prediction (log-rank test P-value ,.005). Another study by Pazenkhottil et al. [57]
further demonstrated the prognostic capacity of a combined CT and SPECT imaging
approach, with higher death rates demonstrate for patients with abnormal findings on
both modalities, in comparison to mismatched or normal findings.

A meta-analysis by Danad et al. [58] reviewing 23 studies with a total of 3788 patients
and 5323 vessels comparing SPECT to invasively measured fraction flow reserve gave an
overall sensitivity of 70% (95% CIs, 59%�80%) and a specificity of 78% (95% CIs,
68%�87%) for the diagnosis of CAD. Of note, based on the per-vessel analysis, SPECT
had a 57% sensitivity and 75% specificity, largely owing to the lack of anatomical data.

Table 6.2 Comparison between positron emission tomography and SPECT in coronary artery

disease.

Modality PET SPECT

Sensitivity 87% 57%
Specificity 84% 94%
Additional

functional
information

LV ejection fraction
Viability

LV ejection fraction
Viability

Limitations Cost
Reduced specificity
Less impacted by left bundle branch
block
Less susceptible to artifact

Higher radiation
Miss balanced ischemia
Reduced sensitivity
Reduced cost
Impacted by left bundle branch
block
More susceptible to artifact

Radiation dose 2�3 mSV 6�11 mSV (Technetium)
41 mSV (Thallium)

Note: CAD, coronary artery disease; PET, Positron emission tomography; SPECT, single-photon emission computed
tomography.
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6.13 Computed tomography in combination with positron emitting
tomography

PET is a nuclear medicine modality that utilizes signals emitted from positron-
emitting radionuclides that are the target of certain regions of interest such as myocar-
dium in order to generate images [59]. PET imaging has the advantage of both
improved spatial resolution and tissue contrast in comparison to SPECT imaging
(Fig. 6.5) [60]. Multiple studies have demonstrated high sensitivity and specificity PET
for detection of significant CAD, with high NPV [61,62].

An additional advantage of a combined CT and PET imaging approach is the ability to
evaluate for microvascular disease [62]. PET adenosine stress testing allows for better evalua-
tion of triple vessel disease, as it offers the added advantage of anatomic correlation as the
interpreter can evaluate the degree of luminal stenosis directly on CT. Conversely, PET can
confirm or refute the presence of flow-limiting CAD on CT by demonstrating the presence
or absence of concomitant perfusion defects [62]. PET and CCTA hybrid imaging can also
be used to help clinicians better select the right patients for ICA. In a study by Kajander
et al. [62], of 375 patients with suspected CAD [62]. PET and CCTA and SPECT and
CCTA are good options for clinicians to better select patients who might benefit from ICA
and subsequent revascularization as opposed to optimal medical therapy [63].

Figure 6.5 Gated Rb-82 Regadenoson stress PET study with evidence of stress perfusion defects in

the apex, mid inferoseptal/anteroseptal, and mid anterior segments (white arrows—top rows are

stress perfusion images and bottom are rest, best appreciated on the perfusion polar map�white
trace) consistent with moderate (10%�20%) ischemia in the LAD territory. There was also evidence

of a small area of scar (black arrow rest perfusion polar map) in the LAD territory (,10%). PET,
Positron emission tomography; LAD, left anterior descending artery.
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Hybrid imaging by PET and CT has great utility in the area of chronic total occlu-
sion, where the decision for revascularization can be challenging [64,65].

6.14 Limitations and strengths of positron emission tomography and
SPECT imaging

In addition to the exposure to radiation (Table 6.1) [66], balanced ischemia is a poten-
tial significant confounder in SPECT imaging [20,67]. This occurs in SPECT imaging
when there is equivalent “balanced” flow limitation of all three coronary vessels,
resulting in a false-positive result.

SPECT and PET imaging are generally widely available and interestingly demonstrated
a cost�benefit in comparison to CCTA as evidenced by Shaw et al. in a study of 11,372
patients [68]. An average excess cost ranging from $500 to $1500 without a major differ-
ence in rates of death or MI at 3-year follow-up when favoring an initial anatomical
approach over a functional approach namely, PET or SPECT (P..20) [68].

In the PROMISE trial there was an average cost at 90 days ranging between $946
and $1132 for a nuclear imaging strategy and an average cost between $2200 and
$2400 for a CCTA or invasive testing. Interestingly, early CCTA testing costs were
on average $332 lower than functional testing costs; however, downstream testing was
$600 higher [69].

Overall, the mean cost difference between the groups remained small after 3 years.
PET is on average more costly than SPECT imaging, and even more so, with the
addition of any hybrid technique [69].

6.15 CTCA and fractional flow reserve

An additional novel functional parameter to the evaluation of flow-limiting CAD with
CTCA imaging is the utility of fluid dynamic-based technology, referred to as fractional
flow reserve CTCA (FFR-CCTA). The feasibility of FFR-CCTA has been demon-
strated in several studies with excellent sensitivity, specificity, and NPV [70]. The NXT
trial by Nørgaard et al. was a prospective multicenter trial of 254 patients scheduled to
undergo clinically indicated ICA for suspected CAD [70]. The authors demonstrated
that when FFR-CCTA was compared to invasively measured FFR, the area under the
receiver-operating characteristic curve for FFR (CCTA) was 0.90 (95% CI, 0.87�0.94)
versus 0.81 (95% CI, 0.76�0.87), P5 .0008 [70]. The sensitivity and specificity for the
detection of ischemia for each individual patient were 86% and 79% for FFR(CCTA)
compared to 94% and 34% for coronary CTA, compared to 64% and 83% for invasive
angiogram, respectively [70]. A study by Koo et al. evaluating the computation of FFR
from CCTA data was performed on 159 vessels in 103 patients undergoing CCTA,
ICA, and FFR [71]. They demonstrated that the sensitivity, specificity, PPV, and NPV
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were 87.9%, 82.2%, 73.9%, 92.2% for FFR(CCTA) and 91.4%, 39.6%, 46.5%, 88.9%
for CCTA detection of stenosis, respectively [71]. The area under the receiver�operator
characteristics curve was 0.90 for FFR (CTCA) and 0.75 for CCTA (P5 .001) [71].
The FFR(CTCA) and FFR demonstrated a good correlation for the detection of CAD
(r5 0.717, P, .001). Min et al. [72] conducted a multicenter diagnostic performance
study involving 252 stable patients with suspected or known CAD from 17 centers in
five countries who underwent CT, ICA, FFR, and FFR(CCTA) [72]. They demon-
strated that the respective sensitivity, specificity, PPV, and NPV for FFR(CT) plus CT
were 90%, 54%, 67%, and 84%, respectively [72].

An exciting application of FFR-CCTA is its use to perform virtual stenting by
computational modeling of coronary flow after CT-guided reconstruction [73]. Kim
et al. prospectively enrolled 44 patients from three different centers (48 lesions) who
had coronary CT angiography before angiography and stenting, and invasively mea-
sured FFR before and after stenting. FFR-CCTA was computed in a blinded fashion
using coronary CT angiography and computational fluid dynamics before and after
virtual coronary stenting [73]. They demonstrated an excellent correlation between
FFR-CCTA and invasive FFR pre- and postpercutaneous coronary revascularization
as evidenced by a measured invasive FFR prior to intervention was 0.706 0.14 and
increased to 0.906 0.05 after stenting [73]. FFR-CCTA prior to intervention was
0.706 0.15 and increased to 0.886 0.05 after virtual coronary stenting. There was
modest correlation between invasive FFR and FFR-CCTA before (R5 0.60,
P, .001) and after intervention (R5 0.55, P, .001) [73]. The mean difference
between FFR-CCTA and FFR was 0.006 for preintervention (95% limit of agree-
ment: �0.27 to 0.28) and 0.024 for postintervention (95% limit of agreement: �0.08
to 0.13) [73]. Intraclass correlation coefficient was 0.71 (P, .001) [73]. The diagnostic
accuracy of FFR-CCTA to predict ischemia (FFR# 0.8) prior to stenting of 77%
(sensitivity: 85.3%, specificity: 57.1%, PPV: 83%, and NPV: 62%) and after stenting of
96% (sensitivity: 100%, specificity: 96% positive predictive value: 50%, and NPV:
100%) [73].

This is an exciting development in the CT imaging and will enable functional
assessment of coronary lesions in a single study without the addition of additional con-
trast agents or radiation.

6.16 Limitations of FFR CCTA

Although a highly promising technique, FFR-CCTA is not widely available and is not
commonly used at the Cleveland Clinic. With regard to cost, Hiatky et al. demon-
strated in 96 patients from the Diagnosis of Ischemia-Causing Stenoses Obtained Via
Noninvasive Fractional Flow Reserve study that initial management costs were highest
for the ICA/visual strategy ($10,702), and lowest for the CTA/FFR-CCTA/ICA
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strategy ($7674). The use of FFR-CCTA to select patients for ICA and PCI would
result in 30% lower costs and 12% fewer events at 1 year compared with the most
commonly used ICA/visual strategy [74]. Despite this overall saving, this technique is
still limited due to the aforementioned lack of widespread availability.

6.16.1 Cardiac magnetic resonance imaging in coronary artery disease

CMR has an excellent spatial and temporal resolution in addition to its major advantage
over other imaging modalities, which is the delineation of soft-tissue contrast [75].
These characteristics enable the comprehensive evaluation of cardiac morphology, func-
tion, regional wall motion abnormality, and early pathologic changes within myocardial
tissue including edema or scar formation. The superior spatial resolution afforded by
CMR enables the delineation between subendocardial and transmural perfusion defects,
which is an added advantage in comparison to CT and SPECT imaging, as subendocar-
dial perfusion defects are often difficult to visualize on other imaging modalities [75].

6.16.2 Cardiac magnetic resonance perfusion imaging

Regional myocardial perfusion can be assessed by first-pass techniques using ultrafast
T1-weighted sequences [76]. MR coronary angiography has become feasible in recent
years, and high-resolution imaging with or without contrast enhancement may allow
for characterization of atherosclerotic plaque.

CMR MPI is a technique that utilized contrast administration, namely, a gadolinium-
based contrast agent at rest and during the administration of a pharmacological agent to
vasodilate the coronary arteries (Fig. 6.6) [76]. The administration of contrast agents shortens
the T1 relaxation time of the myocardium, resulting in an increase in the signal intensity
of the areas of myocardium that is being perfused [76]. Regions that are ischemic regions are
then clearly identified due to the significantly reduced signal intensity in the corresponding
region [76]. Several studies have demonstrated sensitivities and specificities of 84% and 85%
for CMR perfusion techniques in the diagnosis of myocardial ischemia [76�78].

The vastly improved spatial resolution afforded by CMR enables the delineation
between subendocardial and transmural perfusion defects, which is an added advantage
in comparison to CT and SPECT imaging, where subendocardial perfusion defects are
often difficult to objectively appreciate [76].

6.17 Cardiac magnetic resonance angiography

CMR enables the direct visualization of coronary arteries with or without gadolinium
[79]. CMRA also enables the simultaneous visualization of the coronary veins, which
is exceedingly useful for preprocedural planning of pacemaker lead implantation for
cardiac resynchronization therapy [80].
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Balanced steady-state free precession sequences with the addition of parallel imag-
ing techniques using multichannel surface coils, in addition to improved respiratory
gating with navigator echo software have resulted in vastly improved temporal resolu-
tion [81]. Pooled data, a total of 51 studies comparing CCTA and CMRA for the
detection of flow-limiting CAD, demonstrated that the sensitivities and specificities
were higher for CCTA 85% and 95% compared with CMRA 72% and 87%, respec-
tively [82]. The OR for the presence of flow-limiting CAD was higher in CCTA in
comparison to CMRA (16.9 compared to 6.4, P, .0001).

The CMR sequences that were utilized in this studies, however, were subject to
suboptimal gating techniques and were also impacted by a reduced signal-to-noise
ratio. These findings highlight the promise of CMRA, however, necessitate further
development in CMR image acquisition and optimization techniques.

Future developments in the area of CMRA, including higher field strengths and
improved contrast techniques, such as the development of blood pool contrast agents,
will likely improve diagnostic accuracy. Importantly, CMRA-based evaluation of pla-
que morphology and composition in addition to accurate evaluation of coronary flow
may better demonstrate the presence, severity, composition, and the degree of flow
limitation of CAD [83].

Figure 6.6 (A) This CMR image shows a short-axis stack at the mid-left ventricle level with rest perfusion

revealing evidence of mild�moderate ischemia in the basal-mid anterolateral segments (white arrows).
(B) After vasodilator stress (0.4 mg Regadenoson over 4 min), there is worsening ischemia in this territory

as demonstrated by a more prominent hypointense rim in the subendocardium (yellow arrows). (C)
Delayed gadolinium-enhancement analysis reveals no evidence of prior ischemic damage/scar in the

corresponding ischemic segments. CMR, cardiac magnetic resonance imaging.
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6.17.1 Limitations of cardiac magnetic resonance

While MRI provides excellent spatial resolution, it is time-consuming and more
expensive than the other diagnostic tests [84].

Very obese patients may not be able to fit comfortably within the MRI machine,
and patients with severe heart failure may struggle to lie flat for the duration of the
test. Some patients will suffer from claustrophobia to a degree that will not allow
them to tolerate an MRI scan. In patients with very fast heart rates, or frequent irregu-
lar beats, ECG gating may prove unreliable [84].

In addition, patients who have implanted medical devices such as certain types of
pacemakers or defibrillators, or who may have retained pacemaker device leads, ortho-
pedic screws or implants, or metal fragments in their eyes, are not suitable for MRI
investigation [84].

6.18 Conclusion

A multimodality noninvasive cardiovascular imaging approach to the detection and
evaluation of CAD enables the anatomical and functional evaluation of atherosclerotic
plaque, by providing objective data on the degree of stenosis, and impact on down-
stream flow. Combining both anatomic and functional information is key for guiding
patient management, as there is an often variable relationship between the anatomic
degree of a stenotic lesion and the severity of myocardial ischemia. The additional
information with a hybrid combined multimodality imaging approach does result in
increased radiation exposure and higher costs; however, the synergistic approach may
be justified if there is a clear benefit from the information obtained which will opti-
mize downstream patient-specific management.
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CHAPTER 7

Magnetic resonance imaging of ischemic
heart disease

Ahmed Abdel Khalek Abdel Razek, Dalia Fahmy and Germeen Albair Ashmalla
Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt

7.1 Introduction

Detection of nonviable myocardium in early contrast-enhanced (ECE) images, whether
associated or not with enhanced scar in the delay postcontrast images is crucial in the
diagnosis of ischemic cardiomyopathy. Treatment plan is influenced by the ratio of via-
ble to nonviable myocardium, in addition to the presence of any indicators determining
severe myocardial ischemia such as size and extent of infarct, microvascular obstruction,
heterogeneity of infarct, myocardial hemorrhage, and multiple silent or right ventricular
(RV) infarcts. All these issues will be discussed in this chapter.

7.2 Cardiac MR imaging of myocardial infarction

7.2.1 CMR of acute infarction

CMR is usually done in the first 2�5 days following acute MI. Imaging in this situa-
tion is mainly directed to assess the cardiac structure and function. Cardiac function is
evaluated through dedicated visualization of cardiac wall mobility, valve leaflet mobil-
ity and there is associated regurgitation or stenosis in SSFP cine imaging along various
cardiac axes [1�4]. Myocardial perfusion patterns are recognized by watching the early
images taken after IV injection of gadolinium derivatives. Microvascular obstruction
(MVO) manifests as areas of incomplete myocardial reperfusion that appears of low SI
and nonenhancing in the ECE images. On the other hand, myocardial infarct mani-
fests by subendocardial enhancement in late contrast-enhanced (LCE) images obtained
10�15 after contrast injection. The addition of cine imaging provides a combined
viability-functional imaging [3,4]. In case of co-excitant valve disease, phase-contrast
or velocity-encoded cine techniques are used for quantitative assessment of regurgitant
flow volumes and/or measure peak velocities/transvalvular gradients [1�5].

171
Cardiovascular and Coronary Artery Imaging
DOI: https://doi.org/10.1016/B978-0-12-822706-0.00003-2

r 2022 Elsevier Inc.
All rights reserved.

https://doi.org/10.1016/B978-0-12-822706-0.00003-2


7.2.2 CMR with clinical suspicion of acute coronary syndrome

Patients who suffer from symptoms suggesting acute coronary syndrome but routine
imaging and lab tests show no clear evidence of ischemia require a specific CMR proto-
col designed to look for signs of coronary artery stenosis or alternatively other underly-
ing diseases that present with acute severe specifically; acute dissection of the ascending
aorta and acute pulmonary artery embolism. Imaging protocol includes stress perfusion
alone as a single test or with rest perfusion. Injection of vasodilator (e.g., adenosine,
dipyridamole) directs more blood flow to the normally perfused myocardium with less
blood flow to areas supplied by stenotic artery. As mentioned earlier, hypo-perfused
myocardium shows no enhancement in ECE images. The addition of rest-stress perfu-
sion allows measurement of myocardial perfusion reserve. Bright blood (SSFP) imaging
and contrast-enhanced 3D mono-phasic or time-resolved CMR angiography are applied
to exclude the presence of acute dissection of the ascending aorta or filling defects
(emboli) at the pulmonary artery [6�14].

7.2.3 Visualization and characterization of jeopardized myocardium

Jeopardized myocardium is a term used to describe the myocardium devoid of blood sup-
ply distal to coronary artery occlusion. It is important to be reperfused properly before
turning necrotic. Presence of myocardial edema is a clue of the infarct-related artery, while
its absence excludes acute ischemia. Alternatively, myocardial edema is present in other
“acute” cardiac pathologies like myocarditis and stress cardiomyopathy, thus correlation
with findings gained from LCE and cine imaging is mandatory. Myocardial edema is rou-
tinely depicted in T2 WI, yet other sequences namely, pre-contrast T1 mapping and T2
mapping are promising in this issue [15,16]. On the other hand, myocardial infarct is
detected in contrast-enhanced images. The application of an inversion-recovery pre-pulse
improves infarct visualization as it nullifies signal of normal myocardium which enable
accurate delineation of infarcted myocardium (infarct volumes as small as or even less than
1 g). Infarct images are acquired in LCE (Fig. 7.1). Using multislice 2D or 3D sequences
covering the ventricles, the presence and exact size of infarcted myocardium can be visual-
ized and quantified either as a volume or as a percentage of LV mass. Classic myocardial
infarct is located at coronary perfusion territory and shows subendocardial enhancement
with variable transmural extent [9�14,17�24].

A myocardial salvage ratio is defined as the relation between infarct size measured in
LCE imaging to an area at risk measured in T2 WI. This ratio reflects the extent of irre-
versibly damaged myocardium. The presence of myocardial edema in T2 WI that lacks
enhancement in LCE equals aborted MI, while the presence of enhanced myocardium in
LCE that matches the same size of myocardial edema represents a ratio of 0. This ratio is
directly related to post-reperfusion ST-segment resolution, and inversely to adverse LV
remodeling and is considered an independent prognostic value [17�20].

172 Cardiovascular and Coronary Artery Imaging



7.3 MR indicators of myocardial infraction severity

7.3.1 Infarct size and extent of transmural involvement

Myocardial tissue is characterized by low regenerative capacity with replacement of
irreversibly damaged myocardium by nonfunctional fibrotic scar. Thus the amount of
lost contractile tissue is strongly correlated with worse LV remodeling and patient out-
come. LCE imaging proved to be a well-validated, accurate, and reproducible way to
correctly measure the size of myocardial infarct no matter the age of infarct. It can
detect small-sized infarcts that are not detected by ECG or other imaging modalities
such as SPECT. Moreover, assessment of infarct transmurality is the second clue of
infarct severity. Several studies stated that the more mural thickness involved by infarct
the less inotropic reserve, less functional recovery of contractility, more severe residual
adverse effects; severe post-infarct thinning of myocardial wall, ventricular wall aneu-
rysm, and ventricular wall remodeling [18�22].

Figure 7.1 MRI findings of ischemic scar in 64 years old male: Inversion recovery short-axis images

before (A) and after (B) arrival of gadolinium chelate in the left ventricle show perfusion defect in

the anteroseptal wall, multilevel short axis (C, D) and long axis delayed gadolinium enhancement

(E, F) show anteroseptal and apical subendocardial and transmural enhancement denoting ische-

mic scar involving more than 50% of the thickness of the myocardium. MRI, Magnetic resonance

imaging.
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Early measurement of the infarct size is usually overestimated as it will be affected
by the presence of edema and other cellular elements [21]. Progressive decrease of the
infarct size occurs due to improvement of tissue edema and gradual shrinkage of scar
tissue (by as much as 25% over a period of 4�8 weeks). Another factor is the increase
in the remaining myocardial mass attributed to compensatory hypertrophy. So, the
scar to normal myocardium ratio appears to become smaller by time. These changes
are not well represented in calculations of LV total volume and mass [22].

7.3.2 Microvascular obstruction

Although endothelial cells can withstand prolonged ischemia better than myocytes, yet
“no-reflow” or “MVO” could still occur following successful coronary arterial reper-
fusion. It is believed that other factors including reperfusion injury, distal embolization,
and individual susceptibility contribute to the development of MVO. Presence and
extent of MVO are directly related to the actual duration of ischemic event, develop-
ment of collaterals, and how effective it could substitute major vessel occlusion. It is
independently linked to no functional recovery, adverse remodeling, and far worse
patient outcomes. In the case of MVO, the involved segment myocardium shows no
enhancement in the ECE phase, which requires a long inversion time to depict
MVO. On the other hand, several studies reported that persistent MVO at LCE is
more valuable ECE and is stronger indicator of adverse clinical events [25,26].

7.3.3 Intramyocardial hemorrhage

When an irreversibly damaged myocardium is reperfused, intramyocardial hemorrhage
(IMH) with excess extracellular blood extravasation occurs. It is seen after both phar-
macological and mechanical reperfusion. Considering the presence of hemoglobin
breakdown product deoxyhemoglobin that displays low SI in T2 and T2�WI, so hem-
orrhagic infarct appears in T2 WI as segment of high SI with dark center, while non-
hemorrhagic infarcts display homogenous high SI. IMH is linked to more infarcts that
have greater transmural extension and lower baseline ejection fraction. IMH is inde-
pendently related to adverse regional and global LV remodeling, no functional recov-
ery, late arrhythmia, and worse patient outcomes [21�27].

7.3.4 Myocardial infarct heterogeneity

Patients with a recent history of MI are at high risk for arrhythmias. The center of the
necrotic tissue contains mainly dense fibrotic scar that does not depolarize, but the
infarct margin contains a mixture of nonviable and viable cells that act as an arrhyth-
mogenic focus initiating ventricular arrhythmias that may end with sudden cardiac
death. Dense fibrotic myocardium displays high SI in LCE defined as 5SD above the
SI of normal myocardium. Lower SI—that is between 2SD and 5SD—the so-called
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“gray” myocardium representing areas with variable ratio of fibrosis/myocytes. The
gray myocardium is not limited to the infarct margin, it could be seen also in central
segments, in addition to papillary muscles [21�28].

7.3.5 Right ventricular infarction

Isolated RV infarction is a rare event, that is why RV infarction is dealt with as a
biventricular MI. There is a wide variety in infract extent along the anterior or inferior
RV wall resulting in RV dysfunction. No functional recovery is linked with high
death rate. RV wall is trabeculated and relatively thin, which does not make detection
of ischemic changes easy, even with recent techniques. Nevertheless, CMR is
extremely valuable in assessment of reversible and irreversible RV damage using a
dedicated protocol composed of T2 WI, LCE, and cine sequences [21].

7.3.6 Missed infarcts

Unfortunately, about 40%�60% of MIs are silent [29,30]. Unfortunately, any scar in a
person who did not suffer from chest pain is linked to high risk of adverse events.
Delayed-enhancement MR imaging allowed the discovery of silent MI 76%�390%
more frequently than ECG [23].

7.3.7 Chronic myocardial infarction

In chronic MI, cine images depict thinned wall with abnormal mobility (hypo, dys, or
akinetic). Edema is not detected on T2 WI. LCE reveals wall thinning and subendo-
cardial/transmural late enhancement in typical vascular distribution [23].

7.4 Myocardial infarction complications

7.4.1 Thrombus

Left ventricular thrombus is a common adverse effect following myocardial infarction.
It may be associated with formation of arterial emboli causing stroke, mostly seen in
large anterior wall MIs with anteroapical aneurysm. On cine imaging, a thrombus is
shown as an intracavitary mass adherent to an akinetic LV apex (Fig. 7.2).

Long inversion times (TI-value .422 ms), sequences immediately after the injection
of gadolinium and following a 15-minute delay time can discriminate an intracavitary
thrombus from cardiac tumors accurately. A thrombus consistently demonstrates a char-
acteristic pattern of hypo-intensity within the core lesion at early and delayed scans
while the core lesion of hyper- and hypovascularized tumors appears hyperintense in
delayed scan [21,22].
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7.4.2 LV aneurysm

LV aneurysm is one of the rare complications of myocardial infarction; yet, it is associ-
ated with high morbidity and mortality. A true LV aneurysm appears as a dyskinetic
thin well�demarcated myocardial wall bulge that apparently lacks muscle fibers on
cine images. As a result of disorganized weak myocardial muscle contraction, there
will be significant deterioration of LV function. On delayed enhancement inversion
recovery imaging, the wall of the aneurysm shows transmural LGE owing to scarred
fibrotic wall [23,31].

7.5 Future directions

Application of advanced MR sequences including MR spectroscopy that gives
information about metabolic changes within the infarction part of the myocardium
[32�35], diffusion tensor imaging that gives date about cellularity and chronicity of
myocardial infarction [36�42], perfusion with contrast MR imaging for characteri-
zation of myocardial lesions [1�4], arterial spin labeling that gives information
about vascularity of the lesions [43�46], and contrast MR angiography for evalua-
tion of the coronary artery is still limited. It may also be used in the preparative
assessment of aorta and pulmonary artery for any associated or incidental findings
[47�50]. Also the use of structured reporting as for CT of coronary artery disease
[51�57] and artificial inelegance [58,59] in the future will increase the clinical
validity. And it may also be used for MR imaging in the evaluation of patients with
ischemic heart disease.

Figure 7.2 Left ventricular thrombus: Short axis cine (A) and four chamber view cine (B) show

hypointense thrombus within the lumen of the left ventricle near the apex. Delayed postcontrast

short-axis view (C) shows no enhancement.
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8.1 Introduction

There is a wide spectrum of congenital anomalies affecting pulmonary veins and
appears in pediatric patients due to abnormal embryonic vascular development. Those
anomalies vary from small isolated lesions to large complex anomalies with multiple
associated abnormalities. Accurate assessment of pulmonary vascular anomalies is very
important in the treatment plans of those patients [1�6]. Pulmonary veins are four
vascular structures carrying oxygenated blood from the right and left lungs and drain it
to the left atrium as following: (1) Right superior pulmonary vein: carries blood from
upper and middle right lung lobes, (2) Right inferior pulmonary vein: carries blood from
the lower lobe of the right lung, (3) Left superior pulmonary vein: carries blood from the
upper lobe of the left lung and the lingual, and (4) Left inferior pulmonary vein: carries
blood from the left lower lung lobe. The normal venous drainage of the lungs is
considerably variable among the population [2�5].

Different imaging modalities such as MR angiography, ultrasound, and CT angiog-
raphy (CTA) are used for emulation of pulmonary veins [7�11]. Echocardiography is
an initial imaging modality but it is operator-dependent and cannot delineate the
course of extracardiac vascular structures [12�14] and MR angiography is used but it
takes long time for data acquisition and postprocessing time [1�18]. CTA is used for
diagnosis of congenital pulmonary veins in children, detection of associated cardiac or
extracardiac congenital anomalies, and used for postsurgical follow-up of these cases
[19,20]. Dual energy CT (DECT) may be used to decrease the time of examination
and improve the image quality [21,22] and CT perfusion may give an idea about per-
fusion and of the lung [22,23].

The purpose of this chapter is to review the role of CTA in pulmonary venous
anomalies in cases with congenital heart diseases.
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8.2 Classification

The Classification of anomalous pulmonary veins has been represented in Table 8.1.
It is divided into two main sections: total and partial. See Table 8.1.

8.3 Anomalous in caliber of pulmonary veins

8.3.1 Stenosis of pulmonary vein

It is a very rare entity and accounts approximately for 0.4% of congenital cardiac diseases.
Single or more than one vein may be involved. As regard histology; this lesion is character-
ized mostly by thickening of the fibrous intima and to less extent by hypertrophy of the
media. It may lead to death even in unilateral cases (Fig. 8.1) [24,25].

8.3.2 Atresia of pulmonary vein

It means that there is no communication of the pulmonary vein with the left atrium
but it differs from the total anomalous pulmonary venous return (TAPVR) that in this
case, pulmonary veins do not have drainage to the systemic vein or the right atrium.
Decompression of pulmonary venous obstruction is done in small amounts by small
venous collaterals. The patient presented in the neonatal period with severe cyanosis.
It may occur in any of the two lungs, with an equal incidence of both right and left
side affection [26,27].

Table 8.1 Classification of anomalous pulmonary veins.

Pulmonary veins

Caliber anomalies
• Stenosis
• Hypoplasia
• Atresia
• Varix
Total anomalous pulmonary venous return
• Supracardiac
• Cardiac
• Infracardiac
• Mixed
Partial anomalous pulmonary venous return
• Ass sinus venosus defect
• Veno-venous bridge
• Scimitar syndrome
• Pseudo-scimitar
• Cortriatriatum
• Levoatriocardial vein
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8.3.3 Pulmonary venous varix

It is a congenital abnormal dilatation of the pulmonary vein at the site of its connec-
tion with the left atrium. Radiologically it is characterized by a mass with a lobulated
outline seen posterior to the cardiac shadow. The most common veins involved are
the right lower and the left upper pulmonary veins [28,29].

8.4 Total anomalous pulmonary venous return

TAPVR is a rare anomaly with its incidence of about 1%�2% of congenital cardiac
anomalies. It consists of abnormal drainage of the pulmonary venous blood that drains
into returns to the systemic venous circulation instead of normal left atrial drainage. This
results in pulmonary vascular congestion that causes pulmonary hypertension crisis in those
cases. Associated obstruction of the pulmonary veins should be reported as it decreases the
cardiac output significantly. Regarding the level of pulmonary venous drainage, TAPVR
is classified into four types: supracardiac, cardiac, infracardiac, and mixed types [30�35].

8.4.1 Supracardiac type

The commonest type accounting for 45% of TAPVR. In this type, all the four pulmo-
nary veins are draining into an anomalous vertical vein that originates from a venous

Figure 8.1 Stenosis of pulmonary vein.
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confluence located posteriorly to the left atrium and anteriorly to the left main pulmo-
nary artery. It may also be seen passing behind the dilated pulmonary artery and so
become entrapped between it and the left main bronchus causing subsequent com-
pression and obstruction of pulmonary venous blood flow. The vertical vein has an
ascending course that ends in the dilated brachiocephalic vein and then to the superior
vena cava (SVC). The right cardiac chambers are usually dilated due to the volume
overload. There is always an ASD or patent foramen ovale, which is the only source
of flow to the left heart (Fig. 8.2) [32].

8.4.2 Cardiac type

It comes after the supracardiac type as the second most common type accounting for
about 15%�30% of TAPVD. It means that the four pulmonary veins are seen draining
into an anomalous vertical vein that drains to the heart at the level of the coronary
sinus (which is markedly enlarged) or in the right atrium near the interatrial septum at
its posterior wall through a short channel or multiple openings [33].

8.4.3 Infracardiac type

This accounts for about 26% of TAPVR. It is characterized by abnormal drainage of
the four pulmonary veins in a site below the level of the diaphragm. The site of
anomalous drainage in this type includes inferior vena cava, azygos vein, the portal
vein, or one of the hepatic veins. The external compression of the diaphragm on the
anomalous vein commonly causes an obstruction that result in pulmonary edema in
the neonatal period. Infracardiac TAPVR is the commonest type of TAPVR that is
associated with pulmonary venous obstruction accounting for up to 78% of cases
(Fig. 8.3) [34].

8.4.4 Mixed type

The least common type accounting for 2%�10% of TAPVD. This type is character-
ized by abnormal pulmonary venous drainage in two or more different sites whether
supracardiac (as innominate vein or SVC), cardiac (as coronary sinus or right atrium),
or infracardiac (as IVC or portal vein). The most common form of mixed TAPVR is
drainage of the left side to the left brachiocephalic vein and drainage of the right side
to the coronary sinus or the right atrium. A mixed type of TAPVR is usually accom-
panied by other congenital cardiac anomalies [35].

Previously, the only way for good visualization of the pulmonary venous drainage
anomalies was the conventional angiography, but with rapid advances in sectional
imaging CTA as well as MR angiography now allows the excellent depiction of the
pulmonary veins with superadded benefits of extracardiac structures visualization. CTA
not only provides precise anatomical details but also allows evaluation of associated
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Figure 8.2 Patent foramen ovale as the only source of flow to the left heart.
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anomalies in pulmonary arteries, aortic arch, and intra-cardiac septal defects. In addi-
tion, CTA is superior to any other modalities in the assessment of bronchial anatomy
and congenital abnormalities as horseshoe lung, bi-lobed lung, and diverticulae.

Figure 8.3 Infracardiac TAPVR. TAPVR, Total anomalous pulmonary venous return.

186 Cardiovascular and Coronary Artery Imaging



Preoperative evaluation of cases of TAPVR is mandatory for assessment of anatomic
details such as the exact size of pulmonary veins and ostium, presence of pulmonary
venous obstruction, and the exact course and site of anomalous veins. Postoperative
follow-up of these cases is a very important advantage of CTA [36].

8.5 Partial anomalous pulmonary venous return

8.5.1 Partial anomalous venous return (PAPVR)

It means that one or more—but not all—pulmonary veins have abnormal drainage
instead of draining into the left atrium. The right lung is more frequently affected
than the left (Fig. 8.4). There are many classifications of PAPVR types.
1. Regarding the number of involved veins, PAPVR is divided into three types:

a. Unilateral single branch
b. Unilateral two branches
c. Bilateral single branch

2. Regarding the site of anomalous drainage, PAPVR is divided into three types:
a. Supracardiac
b. Cardiac (the most common type)
c. Infracardiac
PAPVR causes left to right shunt and becomes significant clinically if more than

half of the pulmonary venous blood has anomalous drainage. The most common
affected vein is the right superior pulmonary vein. The commonest sites of abnormal
drainage are the right atrium and SVC on the right side and left brachiocephalic vein
on the side. Right-sided PAPVR is usually associated with sinus venosus atrial septal
defect. Other sites of abnormal drainage are coronary sinus, inferior vena cava azygos,
and hemiazygos veins [29,30].

Figure 8.4 PAPVR. PAPVR, Partial anomalous venous return.
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8.5.2 Veno-venous bridge

It means that a systemic vein acts as a bridge between the pulmonary vein and the left
atrium. This is a result of abnormally persistent communication between the embryo-
logical common pulmonary vein and the cardinal veins which is similar to PAPVC.
However, it differs from PAPVC in normal drainage of pulmonary veins in the left
atrium. There may be an anomalous connection to SVC or less commonly to the
IVC [37,38].

8.5.3 Scimitar syndrome

It is also named hypogenitic lung syndrome or congenital venolobar syndrome. It
affects both the right lung and the cardiovascular system. It occurs when there is an
infracardiac anomalous venous return of one or more of the right pulmonary veins
associated with hypoplastic right lung, dextrocardia, hypoplastic right pulmonary
artery, and abnormal arterial supply of the right lower lung lobe from descending aorta
of its branches. This is called the complete form of scimitar syndrome. Other associ-
ated anomalies include bronchial or diaphragmatic anomalies, hemivertebrae, and gen-
itourinary anomalies [1�3]. There are three types of scimitar syndrome: the infantile
type, the adult type, and the third type with associated cardiac and extracardiac anom-
alies. The infantile type consists of a large shunt between the descending aorta and the
right lower branch of the pulmonary artery. The adult type occurs when a small shunt
exists between the IVC and the right pulmonary veins [4�6]. The scimitar syndrome
typically appears in radiographs as a curved opacity that increases in diameter caudally
seen related to the right cardiac border that passes subdiaphragmatic to the IVC which
is known as scimitar sign. It is usually associated with a small right lung and dextrocar-
dia. CTA allows accurate assessment of the anomalous drainage of the right pulmonary
vein and other associated features [39,40].

8.5.4 Pseudo-Scimitar syndrome

It is characterized by an abnormal right pulmonary vein that extends through the right
lung with anomalous drainage to the left atrium, not the right atrium. Pseudo-
Scimitar syndrome is usually accompanied by hypoplastic right lung and dextrocardia.
In many reported cases there is a simultaneous connection to the inferior vena cava as
well as the left atrium [2�5].

8.5.5 Cortriatriatum sinister

It is a rare anomaly characterized by a diagonally oriented membranous diaphragm divid-
ing the left atrium into two chambers: anterior and posterior. One of them contains the
pulmonary venous return while the other contains the mitral valve and the atrial append-
age. Mostly the two chambers are communicating through one or few openings in the
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membranous diaphragm. There are three types of Cortriatriatum anomaly: type 1 with no
openings, type 2 with few small fenestrations in the membrane, and type 3 with large
openings in the membrane and little or no obstruction (Fig. 8.5) [41].

8.5.6 Levoatriocardinal vein

It consists of an abnormal communication between the systemic vein and the left
atrium. It is derived embryologically from the cardinal veins. This connection may be
direct between the systemic vein and the left atrium or a connection between the
systemic veins with one of the pulmonary veins. It is frequently accompanied by
hypogenic lung syndrome [42].

8.5.7 PAPVR of left upper pulmonary vein (LUL PAPVR)

It consists of an abnormal vertical vein that conducts blood upward from the left lung into
the left innominate vein then into the SVC. It is seen on CTA as a left para-aortic vascular
structure where only mediastinal fat is normally present. This vertical vein should not be
mistaken with a persistent left-sided SVC. Other less common drainage sites of LUL
PAPVR are hemiazygos vein and coronary sinus. “Cross mediastinal” drainage has also been
reported. It means that there is a PAPVR from the left lung into the inferior vena cava or
venous drainage from the right lung into persistent left SVC [2�5].

Figure 8.5 Illustrative figure for Cortriatriatum sinister.
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8.6 Merits, limitations, and future directions

CTA is a gold standard modality in cardiac and vascular imaging as it is an easy, nonin-
vasive technique with high spatial resolution. CTA allows accurate evaluation of car-
diovascular anomalies. It is a very fast technique with a short acquisition time that
helps in decreasing the time of radiation exposure and radiation dose. CTA is superior
to MRA in patients with cardiac pacemakers and shorter examination time [3�9].
The main limitation is uncooperative patients of the pediatric age group especially
young patients who cannot hold the breath or even breathe quietly which acquires
the use of sedation. High radiation dose is still a disadvantage in CTA despite many
measures for radiation dose reduction is taken into consideration. Application of intra-
venous route for contrast medium administration is a semiinvasive measure [5�10].
Future applications of structured reporting that has been used previously used for
assessment of coronary arteries, pulmonary fibrosis, hepatic lesions, and neck after ther-
apy [43�47] and machine learning used for the analysis of cardiac imaging to assist the
radiologists with routine tasks, reducing workload, and increasing efficiency of patient
care [48,49]. Future application of this reporting and machine learning for analysis of
pulmonary veins will improve the results in the future. Application of advanced MR
sequences will better evaluate associated incidental vascular lesions, mediastinal masses,
and pericardial findings [50�57].

8.7 Conclusion

CTA is an excellent modality in evaluation of pulmonary vascular anomalies as well as
other associated cardiac and extracardiac abnormalities that is very important for sitting
surgical plans of treatment and postoperative follow-up of those patients.
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CHAPTER 9

Machine learning to predict mortality
risk in coronary artery bypass surgery

Michael P. Rogers and Paul C. Kuo
Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States

9.1 Introduction

Coronary artery disease is one of the leading causes of death in Western countries. First
introduced in the 1960s, coronary artery bypass grafting (CABG) remains one of the
most commonly performed procedures in the United States [1]. Coronary bypass grafting
continues to be the mainstay treatment for patients with significant disease of the left
main coronary artery, three-vessel stenosis, those undergoing valve surgery with associated
coronary disease, and diffuse coronary disease not amenable to treatment with percutane-
ous coronary intervention (PCI) [2,3]. Outcomes have significantly improved over the
last several decades with concomitant decreases in operative morbidity and mortality
despite an increasingly aging population. In an effort to continue improving outcomes,
various perioperative factors have been identified for optimization. Preoperative risk
assessment remains crucial to identify modifiable and nonmodifiable risk factors that may
contribute to patient outcome and for tailoring an individual treatment strategy. To this
end, several risk calculators and scoring systems have been developed to estimate the pre-
dicted surgical risk of morbidity and mortality. The most widely used include the
EuroSCORE (II) and the Society of Thoracic Surgeons (STS) risk calculator, with the
latter providing granularity to include risk of renal failure, stroke, length of stay, sternal
wound infection, and reoperation [4,5]. These models incorporate various patient data
including demographic variables, history of prior cardiac interventions, cardiovascular-
related diagnoses (including hypertension, peripheral artery disease, and COPD), number
and percent stenosis of diseased coronary vessels, concurrent cardiac valvular disease or
arrhythmia, preoperative hemodynamics, need for circulatory support, and functional sta-
tus, among others. Comparisons between these popular models in patients undergoing
isolated CABG showed similar performance [6]. All models currently in use are based on
logistic regression, relying on model input to specify interactions [7]. Though these mod-
els boast comprehensive inputs, various other factors that are not accounted for including
frailty index and degree of existing pulmonary hypertension, and the complex interplay
between these inputs, are not included and may significantly contribute to patient
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outcomes. Some available scoring models have shown to have major limitations and tend
to overestimate actual risk, potentially leading to inappropriate risk stratification and
deferring of surgical intervention when it is indeed warranted, theoretically leading to
unintentional confidence about center performance [8]. Because of this tendency to over-
estimate actual risk, especially in high-risk subgroups, they may also offer little guidance
to assist surgeon judgment. The deficiencies of these current models are partly due to the
models requiring user input to specify complex interactions among the variables. For
example, the contributions of each feature may not be equal or constant across the coex-
isting comorbidities (i.e., age as it relates to the risk of mortality). Accordingly, significant
interest in the usefulness of machine learning (ML) for predictive analytics in CABG sur-
gery has increased. Consequently, various research groups have explored the application
and implementation of ML techniques to this unique patient population with hopes of
improving predictive models and, ultimately, patient outcomes.

ML is a burgeoning artificial intelligence subfield very much in its infancy.
Computer algorithms build models based on sample data to make predictions or deci-
sions without explicitly being programmed to do so. Originally coined in 1959 by IBM
researcher Arthur Samuel, ML within medicine, and particularly within surgery, has
exploded in interest and application in the last decade [9]. Given the significant increase
in information collected on patients throughout the perioperative experience, ML has
sought to leverage these data into meaningful metrics and predictors for morbidity and
mortality. To date, numerous endeavors at characterizing an appropriate ML algorithm
have been undertaken with varying levels of success. Recent meta-analysis suggests ML
modeling for predicting CABG mortality can achieve significantly better discrimination
ability compared to traditional logistic regression techniques when both models apply
the same features [7]. The potential advantages in ML involve the ability to capture
nonlinearity and the interactions among features without the need to manually account
for all interactions. These algorithms may also manage missing variables more efficiently
compared to traditional linear modeling as they do not rely on data distribution assump-
tions [10]. What’s more, unlike traditional modeling techniques, ML is able to refine
and improve prediction accuracy as it accrues more data. Combined with national
cardiac surgical databases, including the STS National Database, ML is poised to have a
significant impact on the future of prediction analytics for not only CABG outcomes
but in all areas of medicine and its respective specialties.

In this chapter, we provide a brief introduction and overview of ML techniques
and their current applications in prediction of CABG morbidity and mortality.

9.2 Principles and applications of machine learning

ML comprises the study and application of computer algorithms that improve auto-
matically over time through experience [11]. These algorithms differ in their approach
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in solving the defined problem, the types of data they allow for input and output, and
the types of problem they seek to solve. These tools can broadly be classified as super-
vised versus unsupervised in their approaches to understanding data. Supervised statistical
learning techniques strive to build a statistical model for novel prediction, or estima-
tion, of an output based on defined input(s) [11]. These methods are popular and
applicable to varying medical, economic, and scientific disciplines. Indeed, the major-
ity of currently available literature for ML prediction of CABG morbidity and mortal-
ity utilizes the power of supervised techniques. In contrast, unsupervised learning uses
data inputs without a corresponding output. These techniques are useful in defining
the structure of data, including the grouping or clustering of data points (Fig. 9.1).
Identifying the broad category of ML tools is an important first step in choosing the
appropriate method for solving ML problems, with the ultimate goal of identifying a
reliable algorithm capable of improving automatically through experience.

9.2.1 Data gathering

Modern healthcare applications of ML rely on large datasets of proprietary or free use
data, often collected at the local, state, or national level. Previously, an investigator
would approach the collection of data and analysis through a priori assumptions
regarding the hypothesis to be tested to prevent collecting unnecessarily or irrelevant
data. However, potentially meaningful associations may be missed by the inappropriate
disregard for truly important data. With the advent of ML technology, these
approaches may be applied to large existing datasets to remedy these previous pitfalls.
The recent explosion of available data collected on patients has had profound signifi-
cance as it relates to studying patient and hospital system outcomes. As hospital groups

Figure 9.1 Machine learning techniques can broadly be categorized into supervised or unsuper-

vised learning depending on their approach to solving the given problem.
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continue to adopt electronic medical records and collect ever-increasing amounts of
patient-related data, the availability and granularity of large datasets will assuredly
expand.

The STS National Database was first established in 1989 as an initiative for quality
improvement and patient safety in cardiothoracic surgery [12]. The comprehensive
database boasts four major components: the STS Adult Cardiac Surgery Database
(ACDS), the STS Congenital Heart Surgery Database, the STS General Thoracic
Surgery Database, and the STS Interagency Registry for Mechanical Circulatory
Support/Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs)
Database. Recently celebrating its 30-year anniversary, the database is heralded as
one of the most comprehensive and granular clinical datasets available in the world
allowing for outcomes analysis, quality improvement, and research [12]. Other large
datasets include those housed at individual institutions or statewide databases including
the Florida Agency for Healthcare Administration. These databases comprise a wealth
of clinical related data and may be combined with other datasets to infer novel predic-
tions. Designing, collecting, maintaining, and leveraging these important data sets are a
key step in healthcare analytics.

Raw, unprocessed healthcare data may be collected and entered into databases
manually or automatically by downloading values from the electronic medical record
or other software. In many instances, disease symptom questionnaires or objective
results from diagnostic studies may be collected at the time of the patient visit and
entered into a central database by a user at a later time. Because these data may contain
significant outliers or obvious laboratory or data entry errors (i.e., in the case of human
manual data entry), they must be corrected or “cleaned” prior to analysis. In the mod-
ern era, this data validation and processing is done via computer through a series of
different tools. Large proprietary datasets often undergo this process prior to being
made available to researchers.

9.2.2 Supervised learning

Supervised learning is a ML technique that seeks to build a statistical model that maps
inputs to a corresponding output based on a data set containing paired inputs and outputs
[11]. These techniques infer a function from a gathered training set of data, that is, a set of
examples used to fit the parameters of interest. Training sets often contain pairs of an
input variable and the corresponding output variable, where the answer is denoted as the
label (or target). The chosen model (e.g., naïve Bayes classifier) is trained on the training
set using a data optimization method and produces a result, which is then compared to
the label for each of the input variables in the training set. The parameters of the model
and the specific learning algorithm used are then adjusted based on the comparison
outcome. Through mathematical iterative optimization of the objective function, the
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algorithm then learns a function that can be used to predict outputs based on new inputs
[13]. The ideal function permits the algorithm to correctly ascertain new outputs from
novel inputs not originally included in the training data. This requires the algorithm to
generalize the training data to apply it to previously unseen data or situations. Algorithms
that improve the accuracy of their predictions, or outputs, over time are considered to
have learned to perform that task [13].

The general outline of solving a problem using a supervised learning technique
includes the following:
1. Determine and gather the data to be used as the defined training set
2. Choose the input feature of the learned function
3. Select the structure of the learned function and the associated algorithm
4. Run the algorithm on the chosen training set
5. Evaluate the accuracy of the algorithm

Determining and choosing the appropriate training set is a key foundational step in
successful implementation of a ML algorithm [11]. These training sets may be based
on widely available state or national data and contain hundreds or thousands of poten-
tial inputs. In the context of healthcare data, these inputs often include various charac-
teristics including patient factors such as age, sex, and diagnostic codes, hospital factors
including staffing and certification status, surgeon factors such as time in practice, and
socioeconomic factors, among others. As an example, suppose we are attempting to
predict 30-day hospital readmission after undergoing coronary artery bypass surgery.
Each input (i.e., age, sex, comorbidity index, etc.) will pair with a corresponding
binary output (outcome) of whether or not a patient was readmitted to the hospital
following CABG surgery within 30 days. Next, we wish to determine an estimator
function that will allow for assessing a new patient’s information (inputs) to a predicted
readmission probability within 30 days. This estimator function may potentially iden-
tify factors that are able to be mitigated or eliminated to reduce possible unnecessary
readmission. To achieve this, the dataset is broken into three subcategories: a training
dataset, a test dataset, and a validation dataset (e.g., 70%, 15%, 15%, respectively) [14].
Each subcategory must contain a representative distribution of inputs and outputs to
represent the original dataset population. The training dataset will be used to learn the
estimator parameters, the validation dataset to finely adjust the parameters, and the test
set to determine the generalizability of the estimator after it has been finalized [15].
Importantly, the test set is used only once in an effort to minimize the likelihood of
memorizing the input�output pairs by repeatedly refining the estimator. If an estima-
tor inappropriately “memorizes” the input�output pairs, it is less likely to fit new data
with the appropriate level of accuracy. This learning of fine details rather than the
larger general properties of the dataset is termed “overfitting” [15].

After appropriate selection and parsing of data, an appropriate family of estimators
is then chosen. These may be broadly classified as linear and nonlinear estimators,
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which include traditional models such as logistic regression [15]. Each learning algo-
rithm has its strengths and weaknesses and there is no single algorithm that will work
best on all supervised learning problems. Often, the investigator chooses the best func-
tion based on intuition. We provide a brief overview of common ML techniques in
the following subsections.

9.2.2.1 Linear regression

Linear regression is a common and simple approach for supervised learning in predict-
ing a quantitative output. At its core, it predicts a linear relationship between a quanti-
tative output (dependent variable) based on one or more input variable(s). An
approach with one input variable is termed simple linear regression, whereas more than
one is termed multiple (or multivariable) linear regression [16]. In this technique, the
relationship between the input�output variables is modeled using linear predictor esti-
mators to fit a linear equation to the observed data. A linear regression line has the fol-
lowing equation where X is the independent variable, the slope of the line is β1, β0 is
the intercept, and the response Y is the dependent variable [Eq. (9.1)]:

Y 5β01 β1X ð9:1Þ

The most common method for fitting a regression line utilizes the method of
least-squares. This technique calculates the best-fitting line (regression line) for the
observed data by minimizing the sum of the squares of the vertical deviations from
each data point to the line of best fit (i.e., if a point lies on the line, its vertical devia-
tion is 0) (Fig. 9.2) [16]. Of course, if the relationship between X and Y are not linear,
a different shaped function would likely fit the data more appropriately.

With more than one input (multivariable linear regression) a process of optimizing
the values of the coefficients by iteratively minimizing the error of the model on the
training data can be employed through Gradient Descent [11]. This process works by
employing random values for each coefficient. The sum of the squared errors is then
calculated for each pair of input�output variables and a learning rate is used as a scale
factor with the coefficients updated in the direction toward minimizing the error. This
process is repeated until a minimum sum of squared error is achieved or there is no
further improvement.

Extensions of the linear model called regularization methods seek to both minimize
the sum of the squared error of the model on the training data (by least-squares
method) and also reduce the complexity of the model by reducing the number of
absolute size of the sum of all coefficients in the model. Two popular methods of reg-
ularization are known as Lasso regression and Ridge regression [11]. Lasso regression
modifies the least-squares method to also minimize the absolute sum of the coefficients
in the model (i.e., L1 regularization). Ridge regression modifies least squares to also
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minimize the squared absolute sum of the coefficients (i.e., L2 regularization). These
methods are effective tools when there is colinearity in the input values and least-
squares would overfit the training data.

Once an appropriate linear model has been determined, making predictions using
the model involves simply solving the equation using the specified inputs. For exam-
ple, if we wished to predict weight from age, our linear regression model would be
the following [Eq. (9.2)]:

Weight5β01β1Age ð9:2Þ

Once the slope and intercept are determined, this equation can then be used to make
predictions on weight based on a previously unknown age. Variations of this approach
have been used to determine the quality of life after CABG, post-CABG survival, and
predictors of CABG cost and reimbursement [17�20]. Carr and colleagues’ analysis of
long-term post-CABG survival highlights the power of this technique to identify clinical
variables that contribute to mortality [18]. Their multivariate analysis confirmed the previ-
ously suspected impact of preoperative renal failure on long-term patient mortality in their
cohort. Similar analyses have been applied across the pre- and postoperative hospital course
to identify similar factors for mitigation or optimization.

Figure 9.2 A scatter plot of simulated data using the least-squares method. The fit is found by the

sum of squared errors. Each line between the data point and the regression line represents an

error. The regression line minimizes the sum of the squared errors of prediction.
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The power of linear regression remains a powerful statistical method in the arma-
mentarium of the researcher and clinician. Moreover, it serves as an ideal starting point
for learning more advanced supervised ML techniques. A proper understanding of lin-
ear regression is paramount to studying these more complex applications.

9.2.2.2 Logistic regression

Linear regression assumes the response variable Y is a quantitative value. However, in
many clinical and healthcare situations, the response variable of interest is indeed qualita-
tive. For example, eye colors (i.e., values of blue, green, hazel) are qualitative, so-called
categorical, values. Predictions involving a qualitative response are known as classification,
as the observed observation is assigned to a category. Alternatively, methods used for
classification may first predict the probability of each category of the qualitative variable
as the basis of its classification [11]. ML applications based on this technique encompass a
wide array of options for classification problems, including logistic regression, linear dis-
criminant analysis, and K-nearest neighbors (KNN). Indeed, more advanced computer-
based classification methods such as generalized additive modeling, trees, random forests,
boosting, and support vector machines (SVMs) also employ these techniques [11].

Like all regression analyses, logistic regression is a predictive analysis. How does the
probability of getting lung cancer change for every pack of cigarettes smoked per day?
Do bodyweight, caloric intake, and age have an effect on the probability of having a
heart attack? These questions are answered utilizing the power of logistic regression.
In fact, all models for prediction in coronary artery bypass surgery are currently based
on logistic regression, which rely on the modeler input to manually specify interac-
tions [7].

Logistic regression can be binomial, ordinal, or multinomial. Binomial, or binary,
logistic regression is useful for situations in which the observed outcome for a depen-
dent variable can only have two types (i.e., alive vs deceased, pass vs fail, etc.).
Multinomial logistic regression is used in situations involving outcomes of three or
more unordered possible types. Ordinal logistic regression involves dependent out-
comes that are ordered. To solve problems where the dependent outcome is binary,
we must model p(X) using a function that gives outputs between 0 and 1 for all values
of X. We may use the following logistic function to achieve this goal:

p Xð Þ5 eβ01β1X

11 eβ01β1X
ð9:3Þ

The STS ACDS contains patient-related demographics, baseline comorbidities, pro-
cedural details, and other clinically relevant data for .6 million procedures performed
by more than 3000 surgeons, accounting for more than 90% of all adult cardiac surgeries
performed in the United States [21�23]. Leveraging these data, the Duke Clinical
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Research group in coordination with the Quality Measurement Task Force used the
ACSD to develop calculators for predicted risk of mortality for CABG procedures [23].
This STS risk calculator is revised regularly to incorporate the most recent updates in
the database. The models are constructed using the following formula:

Predicted Risk5
eðβ01β1X11β2X21...1βnXnÞ

11 eðβ01β1X11β2X21...1βnXnÞ ð9:4Þ

where x1, x2, . . .xπ denote patient preoperative risk factors and β0, β1, . . .βπ denote
regression coefficients [21,24]. The preoperative risk factors are fixed in each version
of the risk model and the regression coefficients are defined by the latest ACSD [21].
The regression coefficient for the time trend is updated to the specific reference period
of the STS database and coincides with the time the data are collected. The robust
nature of the STS dataset and the power of logistic regression have cemented the STS
risk calculator among the most popular and widely used in the world.

Similarly, logistic regression has been used to define the relative contributions of
the healthcare environment on 30-day hospital readmission following CABG [25].
Janjua and colleagues leveraged the Healthcare Cost and Utilization Project State
Inpatient Database combined with the American Hospital Association Annual Health
Survey Databases, the Healthcare Information Management Systems Society, and the
Distressed Communities Index datasets to identify patient health, socioeconomic, and
hospital-level data from six states over 3 years. Using logistic regression with a combi-
nation of backward elimination and forward selection to eliminate insignificant vari-
ables, specific contributors to 30-day readmission were identified with an area under
the curve of 0.71, accuracy of 0.845, and sensitivity of 0.99 [25]. Moreover, the
authors compared this analytic technique with a host of ML techniques to determine
the best-performing predictive model. Like many recent evaluations of ML, decision
tree modeling and gradient boosting, two particular ML techniques were found to
have the best predictive probability compared to traditional statistical techniques.

The utility of ML in the context of predictive analytics in coronary bypass surgery
is only recently being realized. These efforts highlight a novel strategy for improving
on currently used risk calculators and are set to usher in a new understanding of the
contributions of complex interactions between previously unrealized variables.

9.2.2.3 K-nearest neighbors

Linear regression is an example of a parametric approach as it assumes a linear func-
tional form. In contrast, nonparametric approaches do not explicitly assume a paramet-
ric form, thereby allowing for a more flexible approach to regression [11]. KNN
regression is one of the best-known nonparametric methods. Using this method, the
output is the property value for the object, which is the average of the values of the k
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nearest neighbors [11]. The algorithm first computes the Euclidian distance from the
query example to the labeled examples. The labeled examples are next ordered by
increasing distance, an optimal number of KNN is determined, and finally, an inverse
distance weighted average with k-nearest multivariate neighbors is calculated [11]. The
nonparametric approach will outperform the parametric approach if the nonparametric
approach that is used is close to the true form of the function.

9.2.2.4 Random forest algorithm

A Random Forest is an ensemble technique that is useful for performing both classifi-
cation and regression tasks with the use of multiple decision trees and a technique
known as bootstrap aggregation (bagging) [11]. Decision trees involve stratifying or
segmenting the predictor space into a number of regions. In order to make a predic-
tion for a given observation, the mean or mode of the training observation is used for
the region in which it typically belongs [11]. Because the set of splitting rules used to
segment the predictor space can be summarized in a tree (Fig. 9.3), they are known as
decision trees. Decision trees represent a flowchart-like structure in which each inter-
nal node represents a test (e.g., whether an outcome is positive or negative), each
branch represents the outcome of the test, and each “leaf” node represents a class label.
An ensemble method is a technique for combining the predictions from multiple ML
algorithms together to make more accurate predictions than any individual model may
perform alone.

Decision trees are inherently computationally expensive to train, suffer from risk
overfitting of data, and have high variance. If the training dataset is split into equal
halves and each is fitted with a decision tree model, the end results may be quite dif-
ferent due to variance. To overcome these drawbacks, a random forest algorithm

Figure 9.3 Random forest structure. Using the ensemble method of bagging, decision trees are

constructed at raining time and output the class that is the mode of the classes (in classification)

or mean prediction (regression) of the individual trees.
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combines many decision trees into one model by employing the ensemble technique
of bagging. Bagging is a general procedure for reducing the variance of a statistical
learning method [11]. Bagging makes each model run independently and aggregates
the outputs at the end without preference to any one model. The decision trees are
run in parallel and there is no interaction between trees when building. The overall
idea of Random Forest modeling is constructing a multitude of decision trees at the
time of training and outputting the class that is the mode of the classes (classification
method) or mean prediction (regression) of the individual trees. Random Forest is one
of the most accurate learning algorithms available, runs efficiently on large datasets,
and can appropriately handle thousands of input variables [11]. Moreover, it has an
effective method for estimating missing data, which may be an issue in some healthcare
datasets. Random Forests have been observed to overfit some noisy datasets, however.
When considering whether to apply a linear model or more sophisticated technique
such as Random Forest algorithm, the best approach will depend on the relationship
between the features and the response of the problem attempting to be solved.

9.2.2.5 Support vector machines

SVM is an approach for discriminative classification that has continued to grow in
popularity since its introduction in the 1990s [11,13]. Originally developed by AT&T
Bell Laboratories by Vladimir Vapnik and colleagues, it remains one of the most
robust prediction methods available [14]. Starting with a set of training examples, with
each example belonging to one of two categories, an SVM training algorithm builds a
model that assigns new examples to one of the two categories. An SVM model repre-
sents these examples as points in space which are mapped so that the examples of the
two categories are divided by a space as large as possible. New examples to the model
are then mapped onto that space and predicted to belong to either category based on
the side of the space upon which they fall [14]. By finding a line (or hyperplane in
situations .2 dimensions) between different classes of data such that the distance on
either side of the line (or hyperplane) to the closest data points is maximized, SVMs
are able to clearly separate data into two classes. If such a plane exists to maximize this
space, the SVM is known as a so-called maximum margin classifier. The underlying
mathematical details of SVMs are indeed quite technical and beyond the scope of this
chapter. In addition to performing this linear classification, SVMs are also capable of
performing nonlinear classification using kernels, implicitly mapping their inputs into
high-dimensional feature spaces [14].

SVMs may be useful in a wide variety of applications. Previous efforts have used
these techniques to classify images and satellite data, and have been implemented in a
variety of healthcare applications [25,26]. Recent prediction analysis of coronary
bypass graft patency by accounting for the influence of flow hemodynamics was evalu-
ated using SVMs with improved accuracy, sensitivity, and specificity over an existing
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patency prediction model [27]. Other endeavors have evaluated prediction of postop-
erative CABG atrial fibrillation, stratification of patients at risk for needing emergency
CABG following PCI to centers offering this capability, and prediction of long-term
post-CABG outcomes [27�29].

9.2.3 Unsupervised learning

The previously discussed methods for ML all harnessed the power of supervised learn-
ing. Recall that in supervised learning there is an input�output pair of data from
which we infer a function to make predictions. In contrast, unsupervised learning is
used in settings in which the only available set of features is inputs without associated
outputs [11]. Accordingly, we are not interested in prediction because there is no asso-
ciated response variable Y. The goal of unsupervised learning instead is to discover
interesting associations about the variables or observations. Unsupervised techniques
ask the questions: is there an informative way to visualize the data? Are there sub-
groups among the variables or observations [11]? Because the goal is not to predict a
response, unsupervised learning can often be more challenging in its overall applica-
tion. There is no universally accepted method for validating results on an independent
data set, for example, as there is no valid method for checking the results by seeing
how well the response was predicted. However, unsupervised learning remains an
important tool for evaluating data and identifying groups within large datasets. For
instance, a cancer researcher evaluating groupings in the gene expression assays of 100
patients with colon cancer. Two of the most common unsupervised methods include
principal component and cluster analysis, which are briefly discussed below.

Principal component analysis (PCA) is a tool used for visualizing data or in data
preprocessing before applying supervised learning techniques [13]. When evaluating a
large set of variables, principal components analysis allows for summarization of the
dataset with a smaller number of representative variables to collectively explain most
of the variability in the starting dataset, also known as dimensionality reduction.
Principal components are the linear combination of the original variables and the data
set and the analysis seeks to find a low-dimensional representation of data that repre-
sent as much information as possible from the original dataset. In the new coordinate
system, the first axis corresponds to the first principal component that explains the
greatest amount of variance in the data. The second principal component is selected
that lies perpendicular to the first principal component. By finding a new set of
dimensions (or basis of views) such that all the dimensions are orthogonal and ranked
according to the variance of the data (in the direction of maximal variance), PCA
allows for better visualization of the data of interest. This application can be applied to
dimensionality reduction, exploratory data analysis, visualization of high dimensionality
data, or in finding patterns [13].
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Cluster analysis is an exploratory, descriptive data analysis technique that uses a
process of systematically arranging data into groups [13,14]. Clustering allows similar
data and dissimilar data to be grouped accordingly to expose structure within the data-
set. Hierarchical clustering uses methods to split the data using some criterion into
clusters which form into a tree-like structure of clusters. A bottom-up approach starts
with a single parent cluster and builds on the child cluster until the desired criteria are
met. A top-down approach begins with all data observations in one cluster and splits in
stages to move down the hierarchy to reach the desired criteria. Nonhierarchical uses
various partitions in the data observations and then evaluates them by some criteria.
Finally, a model-based method can be employed to prepare each cluster to find the
best model. Similarity in data can be expressed in terms of a distance function and rep-
resent a set of rules that serve as the criteria for grouping or separating data elements.

Both clustering and PCA seek to simplify the data into a smaller number of sum-
maries through different mechanisms. The techniques have broad application in mod-
ern society and include marketing products to consumers (e.g., using median
household income, occupation, residence location, etc.), and in healthcare by parti-
tioning large datasets when looking for similarities across groups (e.g., gene expression
assays). Often, small decisions in how the clustering is performed and the criteria for
how the data are standardized may have large effects on the results and therefore clus-
tering is often performed many times with different choices of parameters to evaluate
the full set of results [14]. The outcome of the clustering analysis is often a starting
point for hypothesis generation and further inquiry, rather than prediction alone, and
can be a valuable tool in the evaluation of large datasets.

9.2.4 Discussion

ML has broad implications for the future of healthcare delivery and in predictive ana-
lytics to appropriately tailor an individual risk profile for each patient with improved
accuracy and reliability. As data collected on patients continue to rise, ML applications
are poised to have a significant impact and improve over previous statistical techniques
for evaluating complex interactions between patient, surgeon, and hospital variables.
Indeed, many contemporary evaluations of ML versus traditional techniques have
shown superior accuracy, sensitivity, and specificity in prediction of 30-day hospital
readmission following CABG, mortality risk, cost modeling, and long-term outcomes
[7,18,25,29]. Janjua and colleagues’ evaluation of various ML algorithms including ran-
dom forest, decision tree, KNN, and logistic regression to determine the relative con-
tributors of the health care environment on 30-day hospital readmission following
CABG highlights the potential power of these techniques when applied to large
patient datasets. Boasting respectable accuracy and sensitivity, modeling allowed for
the novel identification of previously unrealized contributors which may be ripe for
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mitigation or elimination, leading to decreased 30-day hospital readmission, decreased
cost, and improved outcomes. The STS national database, and indeed many other
national and international databases are well positioned to adopt ML algorithms to ele-
vate their predictive power [30]. As ML techniques become more widespread and
more researchers are trained in their application, it will become increasingly important
to understand their purpose and role in the healthcare environment.

Accurately and reproducibly predicting CABG mortality risk has been an ongoing
effort with continual refinement and improvement. Algorithms that are able to auto-
matically adjust to new data elements and incorporate variables of the entirety of the
perioperative experience will be invaluable tools toward realizing this goal. Meta-
analyses evaluating the power of these techniques continue to show significantly better
discrimination ability compared to traditional techniques [7]. Risk stratification scoring,
currently employing the STS-Predicted Risk of Mortality and EuroSCORE II, is set
to undergo a transition from logistic regression to ML [4,7]. The potential to capture
nonlinearity and the interactions among features without modeler input is significant
potential advantages. Additionally, as previously discussed, missing variables are less
detrimental when employing ML techniques over traditional logistic regression.

Drawbacks certainly exist in the current iteration of ML applications. The theory
of so-called “No Free Lunch,” no one ML technique works best for all problems or
in all situations, often means many different ML algorithms must be performed and
the best performing model chosen from the results [31]. This is due to ML algorithms
making some assumptions regarding the predictor and target variable relationships,
which introduces bias into the model. These assumptions will inherently fit some data-
sets better than others. The availability and granularity of large datasets needed to
employ the true power of ML is also an existing limitation. Both traditional statistical
and cutting-edge ML techniques will perform poorly when the predictor is developed
on a small or nongranular dataset. For this reason, ML should only be considered in
situations where very large datasets with many events are available for evaluation and
learning [7].

With an expanding amount of data collected on patients, surgeons, and hospital
systems, several hurdles must be addressed and overcome if new technology is to be
fully embraced. These include storage capacity, computing power, and data privacy,
among others. In the era of increased collection of data from everyday life, including
cell phone metadata, purchasing habits, geo-tracking, banking, and web tracking,
demands have been made for stronger personal data protection rights, improved trans-
parency, and enhanced security. Because of the enormous value of individually tar-
geted advertisements, corporations have steadily improved their ability to use large
swaths of their users’ data to design and deliver targeted advertising in an effort to
maximize revenue. Indeed, data have recently been described as the “new oil of the
digital economy” [32]. Similarly, concerns have arisen surrounding the storage and use
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of patient data in determining insurance policy coverage eligibility, setting premiums,
and using genetic predispositions to decline certain coverage. Major hospitals across
the United States have been targeted with large-scale cyberattacks and ransomware, a
type of malicious software that spreads across networks to encrypt files and demands a
payment to decrypt them [33]. Accordingly, calls for patient and consumer protections
have come to the forefront of recent legislative sessions in the United States Congress.
Novel safeguards will need to be designed and implemented to ensure patient protec-
tion with the goals of mitigating data breaches and discrimination. In 2008 the
Genetic Information Nondiscrimination Act was enacted to bar the use of genetic
information in health insurance coverage and employment [34]. Other similar efforts
have been made to compel companies to provide adequate protection for their
patients and clients. These legislative enforcements will be necessary as an ever-
increasing amount of personal data is collected and used.

9.3 Conclusion

The future of predictive analytics utilizing ML algorithms is indeed bright. Prediction
of CABG morbidity, mortality, 30-day hospital readmission, and the factors that con-
tribute to each scenario will be refined and perfected as technology and algorithms
improve. As these techniques become pervasive, familiarity with their advantages and
pitfalls will be necessary to successfully employ them in clinical practice.
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10.1 Introduction

There is a wide spectrum of congenital anomalies affecting pulmonary vessels and appears in
pediatric patients due to abnormal embryonic vascular development. Those anomalies vary
from small isolated lesions to large complex anomalies with multiple associated abnormalities.
Accurate assessment of pulmonary vascular anomalies is very important in the treatment
plans of those patients [1�5].

Different imaging modalities are used in the evaluation of vascular lesions. The gold
standard modality in patients with congenital cardiac and pulmonary vascular defects is digital
subtraction angiography which allows excellent vascular assessment but its invasiveness and
overlapping of adjacent vascular structures are limitations for its usage in pediatric patients
[6�10]. Echocardiography is usually the first line modality used for patients with congenital
cardiac anomalies as it is an easy a noninvasive and safe way for cardiac assessment, but it has
a small field of view that limits visualization of extracardiac structures as the pulmonary veins
and it cannot provide three-dimensional views that are provided by the cross-sectional
imaging modalities [8�12]. MR imaging is a very good imaging modality in the assessment
of pulmonary vessels. MR angiography allows good visualization of pulmonary vessels better
than white blood imaging sequences that cannot usually visualize small peripheral pulmonary
veins in a sufficient spatial resolution, but MRA takes a long time and has contraindication
in patients with cardiac pacemakers and prosthesis [13�15].

CT angiography (CTA) has been an ideal modality for the evaluation of pulmo-
nary vessels in congenital cardiac anomalies as it is the noninvasive procedure with a
high spatial resolution allowing rapid and accurate assessment of pulmonary vessel size,
course, origin, and any abnormalities. It also allows good evaluation of associated other
cardiovascular abnormalities and any other extracardiac anomalies as lung or vascular
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anomalies. So it is now better than echocardiography and catheterization in the evalu-
ation of pediatric cardiovascular abnormalities [16,17].

The purpose of this chapter is to review the role of CTA in pulmonary arterial
anomalies.

10.2 Classification

Table 10.1 shows the classification of congenital anomalies of pulmonary artery.

10.2.1 Anomalies of caliber

10.2.1.1 Congenital pulmonary artery stenosis

Pulmonary artery stenosis is mostly congenital (95%) rather than acquired. There are
three types: valvular (the most common type), subvalvular, and supravalvular types.
There is a congenital fusion of the pulmonary valve leaflets at the commissures which
causes restriction of the opening of those leaflets in the systolic phase. The pulmonary
valve is dome shaped. It may be associated with right ventricular hypertrophy and pul-
monary artery dilatation [18,19] (Fig. 10.1).

10.2.1.2 Congenital pulmonary artery dilatation

It is characterized by abnormal dilatation of the main pulmonary trunk without any
pulmonary and cardiac diseases (mainly pulmonary valve stenosis) and with normal
right ventricular and pulmonary artery pressure. The right and left pulmonary arteries
may be dilated or of normal diameter. Another point in the diagnosis of congenital
pulmonary artery dilatation is a long period of observation without significant change
in the diameters of the pulmonary arteries. It is usually discovered incidentally on chest
radiographs or CT scans. On chest radiographs, the dilated pulmonary artery appears

Table 10.1 Classification of congenital anomalies of pulmonary artery.

Anomalies caliber of pulmonary artery

�Congenital pulmonary artery stenosis

�Congenital pulmonary artery dilation

Anomalies origin or course of central branch of pulmonary artery

�Pulmonary artery sling
�Crossed pulmonary arteries

Anomalous origin/development of main pulmonary artery (Conotruncal anomalies):

�Tetralogy of Fallot (TOF)
�Pulmonary atresia with VSD
�Transposition of the great arteries (TGA)
�Double-outlet right ventricle (DORV)
�Truncus arteriosus
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as a rounded bulge that mimics a mass in the left mediastinal border. A definitive diag-
nosis may be achieved with the use of CTA [20,21] (Fig. 10.2).

10.2.2 Anomalies origin or course of central branch of pulmonary
artery

10.2.2.1 Crossed pulmonary arteries

This anomaly consists of the upward and rightward origin of the left pulmonary artery that
crosses the right pulmonary artery then passes leftward to cross in front of the trachea.
However, there is usually no subsequent airway compression or narrowing. It is associated
usually with the stenotic origin of the LPA. There is an association with other cardiac anom-
alies as TOF, aortic arch anomalies, double outlet ventricle, and truncus arteriosus [22,23].

Figure 10.1 3D VR image showing hypoplastic MPA, RPA, and LPA with MAPCAs.

Figure 10.2 Congenital pulmonary artery dilatation. (A) Axial and (B) coronal CTA images showing

abnormally dilated MPA with normal diameter of both RPA and LPA. CTA, CT angiography.
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10.2.2.2 Pulmonary artery sling

It consists of anomalous origin of the left pulmonary artery arising from the right pul-
monary artery and courses between trachea and esophagus at the anterior commissure
compressing it and causing respiratory and swallowing difficulty. Pulmonary artery
sling may be associated with tracheal anomalies including tracheal bronchus, complete
tracheal ring, and tracheomalacia [24,25].

10.2.3 Anomalous origin/development of main pulmonary artery
(conotruncal anomalies)

10.2.3.1 Tetralogy of Fallot

The primary abnormality in TOF is abnormal anteriorly positioned conal septum. It
results in the four components of TOF which are: (1) enlarged overriding aorta, (2)
ventricular septal defect (VSD), (3) right ventricular outflow tract stenosis, and (4) right
ventricular hypertrophy. There is a variable degree of pulmonary obstruction ranging
from mild right ventricular outflow obstruction6 pulmonic valvular stenosis to pul-
monary atresia with pulmonary vascular supply from a patent ductus arteriosus or mul-
tiple aortopulmonary systemic collateral vessels. Hypoplastic or absent pulmonary
valve leaflets can also occur that is usually associated with aneurysmal dilatation of cen-
tral pulmonary arteries [26,27] (Fig. 10.3).

10.2.3.2 Pulmonary atresia with ventricular septal defect

Pulmonary atresia with VSD is classified into three types. Type A, the native
pulmonary arteries are present and are supplied by the patent ductus arteriosus.

Figure 10.3 Classic case of TOF. (A) and (B) Axial CTA images showing the classic tetralogy of pul-

monary stenosis, right ventricular hypertrophy, ventricular septal defect, and overriding aorta. TOF,
Tetralogy of Fallot; CTA, CT angiography.
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Type B, pulmonary blood flow is provided by both native pulmonary arteries
and aortopulmonary collateral arteries (MAPCAs). Type C, Absent native pulmo-
nary arteries, and the blood supply is conducted only through MAPCAs [28,29]
(Fig. 10.4).

10.2.3.3 Truncus arteriosus

Truncus arteriosus consists of a single arterial trunk that supplies both systemic and
pulmonary circulation as well as the coronary system. It is usually associated with a
large VSD due to absent infundibular septum. There are four types of truncus arterio-
sus regarding the origin of pulmonary trunk. Truncus arteriosus should be differenti-
ated from another condition named “hemi-truncus” which means that one branch of
pulmonary artery is arising from the aorta while the other branch is normally originat-
ing from the main pulmonary artery [3,30] (Fig. 10.5).

10.2.3.4 Double outlet right ventricle

In double outlet right ventricle, this anomaly in both aorta and pulmonary artery are
arising from the morphologically right ventricle. There are four types of double outlet
right ventricle [31,32] (Fig. 10.6).

Figure 10.4 Pulmonary stenosis with VSD. (A) 3D VR image showing atretic MPA and (B) axial CTA

image showing a large ventricular septal defect. VSD, Ventricular septal defect.
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10.3 Merits, limitations, and future directions

CTA is a gold standard modality in cardiac and vascular imaging as it is an easy, nonin-
vasive technique with high spatial resolution. CTA allows accurate evaluation of car-
diovascular anomalies. It is a very fast technique with a short acquisition time that
helps in decreasing the time of radiation exposure and radiation dose. CTA is superior

Figure 10.5 Truncus arteriosus. (A, B) 3D volume-rendered CTA images showing a single large arte-

rial truck where the MPA arising from its posterior aspect proximal to aortic arch. CTA, CT

angiography.

Figure 10.6 Double outlet right ventricle. (A) Coronal and (B) axial images showing that both PA

(black arrow) and aorta (white arrow) are arising from the right ventricle.
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to MRA in patients with cardiac pacemakers and shorter examination time [1�5].
The main limitation is uncooperative patients of the pediatric age group especially
young patients who cannot hold the breath or even breathe quietly which acquires
the use of sedation. High radiation dose is still a disadvantage in CTA despite many
measures for radiation dose reduction is taken into consideration [4�8]. Future appli-
cation of combined advanced MR imaging may help for detection of associated lesions
[33�36] and the use of artificial intelligence [37] in the future will improve the
results.

10.4 Conclusion

CTA is an excellent modality in the evaluation of congenital anomalies of the pulmo-
nary artery as well as other associated cardiac and extracardiac abnormalities that are
very important for sitting surgical plans of treatment and postoperative follow-up of
those patients.
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CHAPTER 11

Obstructive coronary artery disease
diagnostics: machine learning approach
for an effective preselection of patients

Mateusz Krysiński1, Małgorzata Krysińska1 and Ewaryst Tkacz2
1Silesian Center for Heart Diseases, Zabrze, Poland
2Faculty of Biomedical Engineering, Department of Biosensors and Processing of Biomedical Signals, Silesian University of
Technology, Zabrze, Poland

11.1 Introduction

According to World Health Organization, cardiovascular diseases are the leading cause
of death globally, taking about 18 million lives annually. In the United States alone,
one person dies from cardiovascular disease every 36 seconds [1], which is one in every
four deaths [2]. Heart disease costs the United States more than $200 billion each year
[3], including health care services, medicines, and lost productivity. The most common
type of heart disease is coronary artery disease (CAD).

In the course of the atherosclerotic process, lasting for many years, lipids and
blood-derived inflammatory cells accumulate in the artery, forming the so-called ath-
erosclerotic plaques. The plaques tend to form dystrophic calcification, which in the
later stages of the disease development leads to hardening of the arteries and the for-
mation of endothelial defects above the atherosclerotic foci. The presence of athero-
sclerotic lesions reduces the lumen of the vessel and thus impairs normal blood flow to
the heart, which may lead to cardiovascular events. In the case of significant arterial
stenosis, i.e. when the vessel lumen is reduced by at least 50%, the obstruction is
hemodynamically significant (obstructive coronary artery disease—oCAD), and result-
ing ischemia is characterized by an increased risk of death and cardiovascular events
[4]. As studies show [5], atherosclerosis is closely related to the presence of risk factors.
Among them are dyslipidemias, smoking, diabetes, hypertension, obesity, and low
physical activity. The more risk factors, the greater the risk of CAD. Treatment of
choice depends heavily on the stage of the disease and the location of atherosclerotic
plaques. The key is to eliminate risk factors and use appropriate drugs. Some patients
require coronary angioplasty or coronary bypass grafting.
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The basis of oCAD diagnostics is medical imaging, enabling physicians to make an
appropriate decision regarding further treatment [6,7]. Hence, computed tomography (CT)
is increasingly used in the diagnosis of coronary heart disease. Patients are selected for a CT
scan based on the assessment of the likelihood of significant atherosclerotic stenosis.
According to the American College of Cardiology and American Heart Association guide-
lines, this likelihood depends on the present risk factors and reported symptoms. With the
help of CT, it is possible to quantify the CAD-specific calcifications in the coronary arteries
and determine the severity of the atherosclerosis. For this purpose, the most commonly
used marker is known as Calcium Score (CaSc), developed by Agatston [8]. The evaluation
of coronary artery calcium scan (CACS) is based on the indication of calcifications in the
coronary arteries, with calcifications considered as structures of more than 130 Hounsfield
Units peak intensity. The CACS examination does not allow for the assessment of the
functional significance of atherosclerotic lesions [9], hence the need to perform comple-
mentary coronary computed tomography angiography (CCTA), in which, thanks to the
administration of a contrast agent, it is possible to assess the percentage of artery lumen
obstruction caused by atherosclerotic plaque. Approximately 85% of patients referred to
CCTA do not have significant ($50%) stenosis, which means that the examination is
highly likely to exclude CAD but also exposes patients to the harmful effects of radiation
and contrast agent, notably the prognosis of these patients is very good [10].

Negative effects of the diagnostics may be reduced by a more precise preselection
of patients for CCTA testing. Currently, the threshold for further imaging is usually
high CaSc, typically at least 600 Agatston units, with insufficient limitation as a result.
The solution may be to improve preselection through the use of machine learning.
According to Hampe et al. [11], over the last 10 years, the PubMed database has
included 59 publications related to the use of artificial intelligence in the imaging of
CAD. Most of the manuscripts are on automating the assessment of standard tests,
such as the automatic calcium quantification in CACS or the degree of coronary ste-
nosis in CCTA. Attempts to predict the results of the second study on the basis of the
results of the first (for the purpose of effective preselection) are few and most often
carried out on a small group of patients. The best examples of such an approach are
the works of Al'Aref et al. [12], which appeared in the European Heart Journal, and
Głowacki et al. [13] published by Academic Radiology. The first manuscript describes
the use of the CACS results and clinical data to classify significant stenosis with a score
of 80% sensitivity, 80% specificity, and 83% negative predictive value (NPV). For the
classification, however, the authors used features that are not pathognomonic of CAD,
such as chest pain or exertional dyspnea, which may add unwanted bias to the model
and hamper its predictive abilities. They also emphasize the importance of CACS
quantification for effective predictions, although the calcification marker used in their
work is calculated jointly for the coronary arteries (total CaSc expressed in Agatston
units). The second mentioned manuscript proves that CACS assessment can be
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extended to include the evaluation of extra-coronary calcifications (ECC) and three
calcifications markers in place of singular one improve classification accuracy. In addi-
tion, the separate quantification for each of the coronary arteries leads to further
improvements in algorithm performance. The final reported result was 100% sensitiv-
ity, 70% specificity, and 100% NPV.

11.2 In search for additional diagnostic information

11.2.1 Various methods of calcium quantification

The most commonly used marker of calcification is the CaSc, which is a minimally
invasive assessment of patient's risk of cardiovascular events that also allows to estimate
the total burden of atherosclerotic plaques in coronary arteries [14]. However, it has its
limitations, hence the attempts to develop other markers based on volumetric measure-
ments, such as the mass equivalent (Eq) or the volume of a single atherosclerotic lesion
(Vol). These methods yield values closely correlated with CaSc, however, literature
shows some differences, for example, in the reproducibility of obtained measurements
[15]. For this reason, calcium quantification performed with three separate markers may
provide more diagnostic information than the routine evaluation of calcification using
the Agatston method alone.

11.2.2 Extracoronary atherosclerosis assessment

Extracoronary atherosclerosis is associated with the same risk factors as the develop-
ment of CAD: advanced age, smoking or diabetes [16]. The disease often progresses
unnoticed for many years, usually starting in the lower limbs. Approximately 20%�
25% of patients require revascularization, i.e. invasive restoration of circulation, while
in the case of about 5% of patients advanced pathologies of blood supply require limb
removal, with mortality in the first 24 months after amputation reaching 40% [17].
Atherosclerotic lesions can also develop in the abdominal arteries. Therefore, extracor-
onary calcifications often precede the process of atherosclerotic plaque formation in
the vessels supplying the heart muscle with blood. There is a correlation between
severity, dispersion, and the burden of calcified changes in extracoronary areas with
corresponding factors within the coronary arteries [18]. On this basis, it can be con-
cluded that assessment of extracoronary disease may provide additional diagnostic
information in diagnostics and treatment of oCAD.

Calcified atherosclerotic lesions are preceded by atherosclerotic plaques composed of
lipids, proteins, and foam cells. Calcification occurs in the later stages of the disease
development. Noncalcified lesions, usually refferd to as “soft”, are not imaged in stan-
dard noncontrast tomography and in their case the result of a typical marker in the form
of CaSc is “zero.” Soft lesions are found in 73% of such patients [19]. In most cases,
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these lesions are not associated with oCAD, although in 5%�7% of cases [20,21] artery
lumen narrowing is hemodynamically significant. Thus the CaSc alone, calculated for
the coronary arteries, cannot exclude the presence of oCAD as soft plaques are
detectable only after contrast agent administration. For these patients, the assessment of
extracoronary calcifications may prove useful due to the progressive nature of CAD.

11.2.3 The development of CAD in coronary arteries is not uniform

Atherosclerotic lesions develop within the coronary arteries in a heterogeneous manner.
Plaques most frequently emerge in the proximal sections [22], especially at vascular bifurca-
tions. In the left anterior descending (LAD) artery, the lesions are most often located right
next to the exit of the first diagonal branch and in the proximal segment of this branch [23].
Most often LAD is also the vessel of first CAD appearance [24]. This is also true in the case
of noncalcified lesions, as they usually affect LAD first [25]. Moreover, with disease develop-
ment and involvement of other coronary vessels in advanced stages, LAD remains the artery
with the highest calcification burden [22]. Increased CaSc is associated with moderate or
severe ischemia in LAD, its branches, or in the left circumferential branch (Cx) [26]. Right
coronary artery (RCA) atherosclerosis is less common than LAD but more common than
Cx. It is associated with the greater number of ramifications in these vessels, which makes
them susceptible to the so-called milking effect [27,28]. It is caused by the formation of
myocardial bridge that compresses the coronary vessel during the heart's work, which causes
a backflow of blood and reduces shear stress within the compressed areas. These areas are
then particularly prone to the development of atherosclerosis. Therefore, the assessment of
the CACS examination while taking into consideration the distribution of atherosclerotic
lesions may improve clinical reasoning.

11.3 Materials and methods

11.3.1 Supervised machine learning

As indicated in the publication [21] summarizing the works using machine learning in
CAD diagnostics published in the years 1992�2019, as many as 90% of them are based
on the supervised learning process. This algorithm development methodology is based on
previously identified solutions for a given group of cases. Thanks to the appropriate label-
ing, apart from the input data, the final results are also sent to the model. This way, the
program finds the relationship between the initial parameters and the results to which they
lead. Then after being presented with the input vector of unlabeled and previously
unknown cases, the model is able to predict the expected result. This means, for example,
predicting the results of a given test based on the available assessment of another diagnostic
procedure. In cardiological diagnostics, these are often tests such as coronary angiography,
electrocardiography, single-photon emission tomography, optical tomography, or intravas-
cular measurement with an ultrasound probe.
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11.3.2 CCTA examination as a reference

In our work, the main diagnostic procedure is the aforementioned CCTA test. This
tomography has already been the subject of studies using machine learning techniques,
for example, for the classification of hemodynamically significant atherosclerotic lesions
[29] or for automatic recognition of calcium and lipid-protein accumulation areas [30].
These works describe the use of convolutional and recursive networks with deep
learning approach, using the CCTA as the basis for algorithm inference. The points of
reference, and at the same time the desired indications of the algorithm, are the results
of other studies. The methodology used in our study is different—CCTA was a basis
for assessing the degree of stenosis in coronary arteries and the desired outcome is dif-
ferentiation between lesions indicating oCAD and less significant ones.

11.3.3 Extended CACS evaluation

The parameters used for our machine learning model development were derived from
noncontrast CACS tomography. In comparison to standard diagnostics, the examination
was extended to include the quantification of ECC. There are reports [31] that the
ECC assessment in the thoracic area is associated with main risk factors of cardiovascular
disease development. This is not true for atherosclerotic lesions present in the coronary
arteries. Moreover, quantifications of extracoronary and coronary calcifications are corre-
lated with each other, but it is not completely collinear, which may suggest an addi-
tional information from the ECC assessment for the diagnosis of oCAD. Therefore the
assessments of calcifications in the aortic valve (AoV) and the aorta (Ao) in the thoracic
segment: the ascending and descending aorta, without the aortic arch (which is generally
excluded from the field of view of the tomograph) were obtained. In addition to the
aorta, routinely examined coronary arteries were evaluated separately, which means an
individual evaluation of the LAD, RCA, Cx, and left main artery (LM). For each of the
anatomical structures, three calcification markers were determined: CaSc, Eq, and
Vol. Additional parameters were the age and sex, indicated [32] as important risk factors
for the development of CAD, while being one of the most basic patient data.

11.3.4 Classifier and optimization methods

Classifier of choice was extreme gradient boosting (XGB) algorithm. Model parameters
were optimized with the Bayesian method and the commonly used grid search method.
The Bayesian algorithm was tree-structured Parzen estimator (TPE). This is the method
that proved to be the best among all tested [33] in the optimization of the XGB model
for the credit risk assessment. Due to the supervised learning process, the data were
divided into a training set and a test set. The training set was used to validate the algo-
rithm with the 10-fold cross-validation method, and then it was used as a whole to
develop the final version of the classifier. Separated test group was the final evaluation of
the algorithm. This part of the data included individual patients whose diagnostic results

223Obstructive coronary artery disease diagnostics: machine learning approach for an effective preselection of patients



were not used in any way to develop the algorithm. Such an approach allows for simu-
lation of the classifier’s performance in a real clinical environment.

11.3.5 Study population

The study included patients who were at low to moderate risk of CAD (assessed at the
time of admission by a cardiologist), who were referred in 2017�2019 for CT scans for
coronary artery imaging at the Computed Tomography and X-ray Diagnostics
Laboratory, Silesian Center for Heart Diseases in Zabrze. The inclusion criteria for this
study was performed examination of both CACS and CCTA. The exclusion criteria
were as follows: a result of at least 600 Agatston units in CACS, previously diagnosed
CAD, history of arterial bypass surgery, stent implantation in coronary vessels, or contra-
indications for CCTA, such as chronic kidney disease (determined on the basis of high
creatinine levels in blood) or previous allergic reactions to iodine contrast administration.
Ultimately, 764 patients were enrolled in the study.

11.3.6 Acquisition and diagnostic evaluation of CCTA scans

All coronary artery scans were collected using a dual-source tomograph (SOMATON
Definition Flash, Siemens Healthineers, Forchheim, Germany). Non-contrast-
enhanced tomographies were performed in the longitudinal scanning field from the
level of tracheal carina to the diaphragm. Image reconstruction was carried out assum-
ing a layer thickness of 3 mm, with an increment of 1.5 mm, using B35f kernel type.
The voltage on X-ray tube was 120 kV and the amperage was 75 mA.

After CACS, ECG-gated CCTA tests were performed on stable patients without
arrhythmias. Images were reconstructed using protocol with a layer thickness of 0.75 mm
and an increment of 0.5 mm (which caused an overlapping effect), using B26f kernel type.
The X-ray tube voltage was 100�120 kV (depending on patient's mass index) and the
amperage was 300�450 mA. We used 23 643 0.6 mm collimation. Patients received a
nonionic low osmolar contrast Omnipaque (Iohexol) 350 mg/mL (GE Healthcare); average
dose was 55 mL per patient, administered at a flow rate of 5�5.5 mL/s. Each patient also
received 0.8 mg nitroglycerin. In cases where heart rate was 75�80 beats per minute, meto-
prolol was administered in the amount of 2.5�7.5 mg.

Diagnostic interpretation of collected data was performed by an experienced radi-
ologist and cardiologist specialized in the assessment of atherosclerotic lesions,
employed at the Silesian Center for Heart Diseases in Zabrze. Calcifications were
quantified using dedicated, semiautomatic software (Volume Wizard, Siemens).
Evaluation included visible calcifications of at least 1 mm2 and a peak intensity greater
than 130 Hounsfield units. These changes were automatically recognized and color
marked by the software. The values of three types of calcification markers were
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determined for each of the lesions: CaSc expressed in Agatston units, Vol expressed
in mm3, and Eq expressed in mg.

11.4 Results

11.4.1 Tools used

We performed all statistical calculations in the Python environment and open-source com-
puting libraries available in this language, in particular NumPy and SciPy. To optimize
model hyperparameters, we used the scikit-learn library and grid search method. Bayesian
optimization was performed with the hyperopt library. We created a classifier model using
the available XGBoost library, containing the Gradient Boosting model, with a base algo-
rithm in a form of decision tree. Statistical comparisons, depending on distribution and type
of data, were conducted using Student’s t-test, Mann�Whitney U test, or chi-square test
(when the data were in contingency tables form). Comparisons involving more than two
groups were performed with the following tests: ANOVA, Kruskal�Wallis test, or multidi-
mensional chi-square test. For the statistical inference, we assumed a significance level of
5%.

11.4.2 Study population characteristics

Results collected from 764 patients were divided into two groups: 560 people were qualified
to training group and 204 to test group, to simulate a clinical trial and final evaluation of
developed classifier. Statistical comparison of the groups is presented in Table 11.1.

Groups did not differ in mean age, percentage of men, and percentage of oCAD.
However, statistically significant differences were found in mean calcification of coro-
nary arteries, aorta, and AoV. Results indicate that on average patients in the test
group had more severe CAD.

11.4.3 Calcific burden

An important aspect of this study is a conclusion that burden of calcified lesions in
each of the coronary arteries is different, and these differences are important for the
diagnosis of oCAD. Therefore, we conducted a series of statistical analyzes to showcase
contrasts in the development of atherosclerotic lesions in coronary vessels. As the main
goal of our research is to identify patients who do not require further diagnostic pro-
cedures in their current stage of CAD, the initial phase of atherosclerosis is the most
important. For this reason, in our analyzes we emphasized single-vessel CAD, i.e.
when only one of the coronary vessels is diseased. However, with the progress of
CAD, usually more arteries are involved. A more detailed illustration of this process is
presented in Fig. 11.1.
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Table 11.1 Statistical comparison of training group of 560 patients and test group of 204 patients.

Training group Test group P

N5 560 N5 204

Age 60.36 10.2 60.26 11.1 .49
Male (%) 25 28 .31
oCAD 81 19 .06
Calcium score: 656 114 2456 111 , .00001

LAD 386 74 686 83 , .00001
LM 3.96 17.7 26.16 28.4 , .00001
RCA 156 44 396 55 , .00001
Cx 8.26 24.6 276 31 , .00001
Ao 2006 664 7196 1517 , .00001
AoV 10.46 68.7 4656 812 , .00001

Figure 11.1 Cumulative percentages of number of arteries with developed atherosclerotic lesions

in relation to Calcium Score expressed in Agatston units.
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The graph shows cumulative percentage of up to 600 CaSc, because exceeding this
value was one of the exclusion criteria from the study. There is a clearly visible trend
of decreasing proportion of single-vessel disease and increasing proportion of multi-
vessel disease. The results are consistent with our presuppositions: they confirm
dynamic development of atherosclerosis, which, as plaques in coronary vessels con-
tinue to grow, takes up subsequent coronary arteries due to blood flow disturbance in
these areas. We made a similar comparison after prior division into subgroups depend-
ing on the value of the CaSc. The comparison is shown in Fig. 11.2.

Ranges of CaSc values presented in the figure are the most commonly used ranges
that categorize this calcification marker, equated with an increasing risk of coronary
heart disease. These are:
• [0, 10)—minimal risk of CAD
• (10, 100]—mild risk of CAD
• (100, 400]—moderate risk of CAD
• . 400—severe risk of CAD

Figure 11.2 Percentage of number of coronary arteries with atherosclerotic lesions depending on

the risk category of coronary artery disease, identified by Calcium Score value.
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We compared categorical data with chi-square test, which confirmed statistically
significant differences between the groups in indicated ranges. Again, there is an evi-
dent decreasing proportion of single-vessel atherosclerosis with increasing risk of CAD.
The greater the risk of CAD, the more common is multivessel atherosclerosis.

Apart from number of diseased vessels, localization of lesions is also an important
information. Therefore, for further analyzes coronary arteries were considered sepa-
rately. In order to facilitate the understanding of the results, colors corresponding to
analyzed arteries were drawn on a coronary vessels schema (Fig. 11.3).

The comparison of single-vessel disease prevalence in particular vessels is presented
in Fig. 11.4. Similar to the analysis of number of diseased vessels, we divided data into
groups with the same risk of CAD, determined with CaSc values.

There was not a single case of one-vessel CAD in the highest risk range. This is in
line with previous results showing dynamic pace of atherosclerotic lesions develop-
ment when one vessel is involved and atherosclerotic plaques are forming in subse-
quent vessels. The most frequently involved coronary artery in one-vessel disease is
LAD artery (for our analysis treated jointly with its septal branches). In patients at
moderately high risk of CAD (100�400 CaSc), it is the only artery in which athero-
sclerosis is of single-vessel type. This means that LAD is a vessel in which CAD can

Figure 11.3 Schema of myocardial blood supply with color markings of coronary arteries analo-

gous to those used in further analyzes. RCA, Right coronary artery; LM, left main; Cx, left circumflex

artery; LAD, left anterior descending.
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develop for the longest time without affecting other arteries. The reverse trend is visi-
ble for other coronary arteries, particularly RCA. In the lowest risk category, RCA
percentage is more than twice as large as in the next category. We also presented per-
centage changes in each artery as a cumulative percentage curve, in the CaSc 0�100
range (Fig. 11.5), i.e. the two lowest risk categories. In our population increased risk
of CAD is related to the lack of single-vessel CAD cases, other than LAD.

There is a trend of decreasing RCA percentage in single-vessel CAD cases with an
increase in total heart burden due to calcified atherosclerotic lesions. This indicates
that after the involvement of RCA, atherosclerosis tends to develop in subsequent ves-
sels of left coronary artery. The proportion of Cx and LM is approximately constant
and in both cases does not exceed 10% of all of the patients.

In the next step we analyzed the average calcium burden of each artery. We made
a comparison taking into consideration all cases, and also after separating cases of
single-vessel CAD. Obtained results in the form of mean values (histogram bars
height) with standard deviations (marked with a dashed line) are shown in Fig. 11.6.

Figure 11.4 Percentage of single-vessel disease in each coronary artery, based on typical risk

ranges for CAD. CAD, Coronary artery disease.

229Obstructive coronary artery disease diagnostics: machine learning approach for an effective preselection of patients



Figure 11.5 Cumulative percentage of single-vessel CAD among coronary arteries, in relation to

calcium score. CAD, Coronary artery disease.

Figure 11.6 Mean values of Calcium Score in each coronary artery, including single- and multivessel

CAD. CAD, Coronary artery disease.



Due to inconsistency of data distributions with the normal distribution (determined
using Shapiro�Wilk test) and heteroscedasticity of groups (Levene's test), the comparison
between groups was performed using the Kruskal�Wallis test. Tests showed statistically
significant differences in mean calcium burden of coronary arteries in both comparisons.
This confirms the initial assumptions about heterogeneous distribution of atherosclerotic
plaques in patients, regardless of the stage of CAD development.

Next analysis was based on estimation of the initial age of CAD, using only data from
patients with single-vessel CAD. There are reports indicating an annual increase of CaSc
by 20%�30% [34], 24% [35], or 26% [36]. On this basis, we assumed an average annual
increase of this marker of 25%. Using this value, we calculated at what age patient’s CaSc
was less than 0.1 Agatston units. The mean values are presented in Fig. 11.7.

Due to a large variance in estimated age, the ANOVA test did not show any
significant differences in mean values. We made an additional comparison between
the mean age in LAD and RCA using the Student's Tukey HSD test. In this case,
comparison proved a statistically significant difference. The graph shows that the
earliest atherosclerotic lesions can be expected in LAD, significantly more often than
in RCA.

Obtained results confirm not only the initial assumptions about heterogeneity of
atherosclerotic lesions occurrence in coronary vessels but also a differentiation of their

Figure 11.7 Estimated average initial age of coronary artery disease.
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total calcification burden or estimated initial age of disease. Consequently, throughout
all analyzes, the most prone artery seems to be LAD. It may be related to previously
discussed milking effect. Therefore, our next analyzes regarded only this one artery.
We examined how LAD percentage changes depending on the severity of CAD.
Fig. 11.8 shows changes in LAD percentage with an increase in CaSc value in all
patients.

The graph shows that with the increase in total calcification of coronary arteries,
the percentage of LAD among diseased vessels increases. This is related to a tendency
of CAD to spread and invade subsequent coronary arteries, but also to already con-
firmed increased susceptibility of LAD to atherosclerotic plaques formation. This is
illustrated in Fig. 11.9.

Combined with the previous results, we can conclude that the susceptibility of
LAD to development of atherosclerotic lesions is the main reason for the highest
rates of CAD in this artery. As the number of calcified arteries increases, percentage
of LAD increases significantly. On average, CAD develops the earliest and the most
often in LAD. Even if the development of atherosclerosis begins in a different vessel,
probability of calcified lesions formation in LAD increases with development of the
disease. In the case of two-vessel disease, it is over 90%, and in three-vessel disease—
nearly 100%.

Figure 11.8 Percentage of LAD among vessels with atherosclerotic plaques, in relation to Calcium

Score value. LAD, Left anterior descending.
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Performed analysis of coronary artery calcific burden provides evidence for the the-
sis that development of atherosclerosis in vessels supplying heart muscle with blood is
not heterogeneous. Differences are observed in the susceptibility of vessels to CAD,
the average initial age of atheroslerotic process, or total accumulated calcific burden.
This suggests that the individual assessment of calcifications in each of the coronary
vessels separately may allow for a more accurate inference about the stage of CAD
in every patient. This information is important not only for the purpose of oCAD
diagnostics but also for the development of a classifier which was the main goal of
this work.

11.4.4 Model development

11.4.4.1 Number of base models

As an ensemble algorithm, XGB models are put together by combining selected num-
ber of lower-order algorithms into one model. In this work, we used a decision tree
as the basic model. Number of decision trees that make up the final model is one of
the optimized hyperparameters, named “boosting rounds”. An important issue in this
process is optimization of error made by the algorithm and variance of this error
between the training set and the test set. It is necessary to follow simultaneous mini-
malization of both these parameters, which always takes place on the basis of a

Figure 11.9 Percentage of LAD among diseased vessels depending on number of arteries affected

by atherosclerosis. LAD, Left anterior descending.

233Obstructive coronary artery disease diagnostics: machine learning approach for an effective preselection of patients



compromise named bias-variance tradeoff. It is not possible to decrease classification or
regression error limitlessly because it will lead to model overfitting. It is a situation in
which the model perfectly recognizes dependencies in training set, but cannot cope
with the problem in the case of test data. An algorithm highly specialized in guessing
known results loses on generalization of the problem and is not applicable to
unknown cases. Results of number of basic models selection in terms of bias-variance
tradeoff are presented in Fig. 11.10. The graph shows the optimization of one of the
prepared models, but the best result is the same for all other analyzes.

The graph shows that the best conditions for the above-mentioned compromise
occur after assembling the classifier from 23 basic models. Despite the fact that in sub-
sequent iterations training error decreases, test error and variance show the opposite
trend. Results were obtained by dividing the training set (560 patients) by randomiza-
tion into a temporary test set (20% of data) and a temporary training set (80% of data).
We used the same division in all other operations during development and validation
of the classifier.

11.4.4.2 Optimization of hyperparameters

In addition to the number of base models, the algorithm is regulated by a number
of other hyperparameters. Their names and briefly described functions are described
in Table 11.2.

We optimized parameters using the grid search and TPE methods, which lead to
two separate sets (Table 11.3) used to train the algorithm.

Figure 11.10 First step of hyperparameters tuning is based on test and training error, and their

variance.
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11.4.4.3 Classifier training and validation

Using both sets of parameters, we developed two versions of the classifier. For this
purpose, we used a previously separated training set. The classification results as
receiver operating characteristic (ROC) curve are presented in Fig. 11.11.

As our main goal is an effective preselection of patients, it is particularly impor-
tant to maintain the highest possible sensitivity, i.e. True Positive Rate, as it trans-
lates directly into NPV. The graph shows that with 100% sensitivity, the highest
specificity was achieved by the model using coronary and ECC evaluation with TPE

Table 11.2 Hyperparameters optimized during a machine learning model development process.

Name Function

Alpha Lasso regression regularization parameter
colsample_bytree Fraction of randomly selected parameters among all parameters used to

develop a single model
Eta An algorithm’s speed of learning, responsible for the change of weights

in each iteration
Gamma The minimum increment of cost function required to split a tree “leaf”
Lambda Ridge regression regularization parameter
max_depth The maximum size of a single decision tree; necessary to control

overfitting
min_child_weight The minimum sum of weights in each decision tree “leaf” required to

create it. This parameter is used to prevent the model from absorbing
very specialized and niche data dependencies

scale_pos_weight The scaling value of weight, helpful for significant disproportions in class
representativeness

Subsample A randomly selected fraction of all observations used to create a single
model

Table 11.3 Sets of hyperparameters corresponding to both methods of their optimization.

Parameter Grid search TPE

Alpha 0.000 6.158
colsample_bytree 1.000 0.532
Eta 0.25 0.149
Gamma 4.5 0.363
Lambda 3 6.814
max_depth 6 12
min_child_weight 15 3
scale_pos_weight 1 2.265
Subsample 1 0.709
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optimization parameters. In addition, we also calculated the area under curve (AUC)
for each of the models and again the TPE-based model turned out to be the best.
The most important conclusion provided by the graph, however, is that the use of
ECC evaluation leads to better results. AoV leaflet calcifications, which have a differ-
ent etiopathology from that of coronary calcifications [37], were also one of the
parameters. To evaluate the significance of this parameter, we developed two addi-
tional models based on previously determined sets of hyperparameters, but without
taking into account the assessment of AoV calcifications in training data. The classifi-
cation results on the reduced data set are presented with the ROC curves in
Fig. 11.12.

In this case, the best model was created with a set of parameters from grid search
optimization. Results of the TPE optimization model deteriorated compared to the
full data set. However, this is still a clearly more accurate classification than if the
data were limited to the assessment of coronary calcifications only. Since plotted
curves do not provide a clear answer whether limiting the size of data improves or

Figure 11.11 Receiver operating characteristic curve created from classification results. CACS, Coronary
artery calcium scan; ECC, extra-coronary calcifications; TPE, tree-structured Parzen estimator.

236 Cardiovascular and Coronary Artery Imaging



worsens classification results, we conducted further analysis of each of the four mod-
els showing the best results. The assessment was performed using the 10-fold cross-
validation method. It is a method in which the entire training set is divided into
10 subsets, each of which is a test set in one of the 10 draws, and in the remaining
ones, it is part of the training set consisting of nine subsets. We have plotted mean
error curves within the training set in Fig. 11.13.

Results do not correspond to previously plotted ROC curves, i.e. in the case of
grid search optimization, the classification results did not improve with dataset reduc-
tion. The most effective models (characterized by 18%�20% lower error than others)
were based on a full set of data. For further analysis of models, we also plotted the
mean error on the test set (Fig. 11.14).

The situation is identical to the training error: best two models use a complete data
set. In the case of models developed on a limited data set, the mean test error
increased by about 10% compared to the mean training error. Plotted characteristics

Figure 11.12 Receiver operating characteristic curve created from classification results based on

the reduced (without aortic valve examination) data set. CACS, Coronary artery calcium scan; ECC,
extra-coronary calcifications; TPE, tree-structured Parzen estimator.
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Figure 11.14 Mean test error in each of the 10 iterations of 10-fold cross-validation. TPE, Tree-
structured Parzen estimator.

Figure 11.13 An average training error in each of the 10 iterations of 10-fold cross-validation. TPE,
Tree-structured Parzen estimator.
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are complemented by a curve showing an average variance of tested models over
cross-validation iterations, presented in Fig. 11.15.

A variance of models developed on reduced data set, regardless of hyperparameter
optimization method, is 2�4 times greater than a variance of both models based on
full data set. In the last stage of evaluation of prepared models, we developed each of
them based on the entire training set, i.e. 560 patients. We conducted their evaluation
on results of remaining 204 patients, which we had not used at all in any of the previ-
ous processes. Classification results in the form of ROC curve are presented in
Fig. 11.16.

Results indicate that limiting the data set and excluding AoV observations ulti-
mately improve classifier performance. Models based on full data set showcased smaller
errors and variance during validation probably due to too high specialization for spe-
cific cases. However, the area under the ROC curve alone is not sufficient to assess
suitability of each model for the purposes of this study. Therefore, we also determined
values of the highest possible classification specificity while maintaining 100% NPV.
The results are presented in Table 11.4.

Figure 11.15 Mean variance in each of the 10 iterations of 10-fold cross-validation. TPE, Tree-
structured Parzen estimator.
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11.5 Conclusions

11.5.1 Heterogeneity of coronary arteries atherosclerotic plaque burden

Results show that in the lowest ranges of CaSc values, the most common are cases
of single-vessel disease. As CAD progresses, more coronary vessels are involved.

Figure 11.16 Final classification results on the test set plotted as ROC curves. CACS, Coronary artery

calcium scan; ECC, extra-coronary calcifications; TPE, tree-structured Parzen estimator; ROC, receiver
operating characteristic.

Table 11.4 Sensitivity and specificity values achieved in classification on the test set by each of the

developed models.

Model Sensitivity (%) Specificity (%)

Grid search all data 100 61
Grid search limited data 100 74
TPE all data 100 61
TPE limited data 100 66
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The most burdened is LAD artery. Atherosclerosis in LAD occurs most often, and it
is commonly transferred to LAD when the process of atherosclerotic plaque forma-
tion already started in another coronary artery. These results are in line with the
reports in the literature [38], which also indicate that calcifications in LAD lead to
myocardial infarction with ST-segment elevation significantly more often than in
other arteries. The aspect of coronary calcifications localization is therefore important
not only from the point of view of this study and the use of such information
for predictive purposes, but it is also an important factor in the prognosis of patients
suffering from CAD.

11.5.2 Machine learning model validation

An extremely important element in the process of creating a machine learning model
is focus on the appropriate generalization of the problem. It is very easy to overtrain
the algorithm, which hampers the usefulness of the obtained tool. While results
appear to be encouraging, in subsequent operations care and appropriate methodol-
ogy should be taken. In this study, better results of models obtained on full data set
in the validation process are a typical sign of overfitting. This phenomenon becomes
apparent only after the attempt to generalize the problem and predict results for pre-
viously unknown data. These models were specialized in a very specific group of
patients, for whom observation of AoV calcifications allowed for a slight improve-
ment in classification results. It leads, however, to a worse model performance in the
clinical trial simulation. These results are consistent with the literature [37], which
indicates that the assessment of AoV leaflet calcification is of low significance for
prediction of oCAD.

11.5.3 Effectiveness of developed tool

The best of obtained models was characterized by a 74% specificity at 100% sensitiv-
ity. This is a much better result than in a similar study [12] in the same area. Al'Aref
et al. described an algorithm achieving 80% specificity at 80% sensitivity. In their
work, however, they used parameters that are not pathognomonic for CAD, such as
exertional dyspnea or chest pain, which may introduce an unnecessary bias into the
machine learning model and hamper its predictive abilities. In addition, quantitative
assessments of CACS scans were carried out in a standard, cumulative way. On
the other hand, Głowacki et al. described a model that uses the extended assessment
of CACS test to develop a classifier characterized by 70% specificity at 100% sensitiv-
ity [13]. Compared to these results, the classifier obtained in this study, to the
authors’ knowledge, is the best tool currently described in the literature for selecting
patients in whom it is possible to refrain from further diagnostics due to the low risk
of oCAD.
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12.1 Introduction

Hyperkinesia (or hyperkinesis movement disorder) is a term derived from the ancient
Greek language, which describes the abnormal or restless state, excessive movement of
the heart, or combination of both. In the western medical history, the concept of
hyperkinesia was introduced by Paracelsus in the 16th century. Heart disease, a range
of conditions that could affect one’s heart, is one of the most prevalent diseases world-
wide. Nearly half of the Americans�Africans are suffering from cardiological disorder,
out of which 46% are men and other are women [1]. Coronary heart disease is the
chief cause of death in the United States and more than 370,000 people annually suc-
cumb to the same. In the United States, every year almost 735,000 people suffer from
a heart attack [2]. In terms of productivity and morality, it would cost about $351.2
billion. A survey of nearly 14,000 individuals with diabetes or other threat influences
for diseases of heart revealed that doctors regularly miss chances to classify heart diffi-
culties early. Just one in five measured patients having heart disease supposed they
were diagnosed correctly as an outcome of routine screening. More than half of
patients containing type 2 diabetes (55%) and a little less than half of patients having
no diabetes (48%) described having their disease diagnosed after they developed symp-
toms. A number of individuals confirmed that there were being analyzed because of
screening, indicating that they missed their chances to avoid coronary disease.

The danger of having heart problems and the associated investigation were accompanied
by a determination to measure whether supported screening guiding principle are important
in an earlier diagnosis of cardiac disease. The learning includes a nationally demonstrative
example of patients having diabetes or other major hazardous influences for heart disease.
Heart patients identified after American Heart Association (AHA) and the American College
of Cardiology (ACC) studied their screening guidelines were somewhat similar to those
identified during regular screening as patients identified before this time.
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This study was published in the May-June 2017 issue of The International Journal of
Clinical Practice. The AHA and ACC now assert that all grown-ups should get themselves
tested for cardiovascular threat factors at a young age of 20 years itself. The past cardiac
records of people affected with the disease in question should be updated on a regular basis.

Physicians have an obligation to recurrently enquire from their patients about the
latter’s liquor consumption, smoking habits, diet, and physical development level.
Timely estimation of fasting serum lipoprotein profile, or aggregate and high-density
lipoprotein cholesterol, and fasting blood glucose can help control the patient's risk for
diabetes and elevated cholesterol. All adults 40 years or older should identify their
complete threat of emerging cardiovascular disease. This is mainly important for peo-
ple belonging to this age group and those with two or extra threat influences for heart
disease.

Global hypokinesia means poor functioning of the heart. Heart failure, or congestive
heart failure (CHF), is a disorder of small heart, which gives rise to increased rapidity in
inhalation and inflammation in the boundaries [4]. The most general source of heart failure
is ischemic (secondary to obstructions in blood vessel). Other reasons include hypertensive
(high blood pressure), viral, valvar, and idiopathic. The analysis of CHF is made by symp-
toms and testing of heart. An echocardiogram or cardiac catheterization is mainly done to
diagnose working of the pumping chamber. Other investigations can be done to identify
conditions that can cause CHF [3,5,6].

Medical or surgical are two forms of treatments for heart failure. The surgery is typi-
cally suggested if the reasons behind failure are blockages or valve problems. Medical
administration includes digoxin, angiotensin-converting enzyme (ACE) inhibitors and
diuretics. Recent studies have demonstrated that low-dose beta blockers increase symp-
toms and survival in patients having CHF. Heart transplantation is generally used during
the final stage of CHF. As CHF is a highly prevalent problem, new treatments are being
developed.

12.1.1 Causes

Certain reasons of global hypokinesia that can lead to heart outbreak underlie occurrence
of different disorders that can damage cardiac muscle. These causes are as follows:
1. Overload of the cardiac scheme
2. Coronary artery disease
3. Heart attack
4. Cardiomyopathy

12.1.2 Overload of the cardiac scheme

Having different health conditions, such as hypertension, congenital heart defects, thyroid
disorder, valve abnormalities, kidney ailments, and diabetes, can increase pressure on heart,
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and such pressure on cardiovascular framework can lead to global hypokinesia�related
heart attack. Patients suffering from such a disorder will effects one these numerous issues,
increasingly expected and to experience such cardiovascular anomalies like as the overload-
ing of the cardiovascular system.

12.1.3 Coronary artery disease

In coronary artery disease, the arteries, which provide oxygen and blood for cardiac system
get semiblocked with protein, which leads to a low level of oxygen having blood resource
to the heart muscles. This blockage can also decrease flow of vital nutrients to heart,
which damage can in turn it and cause global hypokinesia�associated heart failure. This is
an important cause of global hypokinesia disease.

12.1.4 Heart attack

In this condition, a cardiac capture is caused because of obstruction in a coronary
artery. Such clogging can stop flow of blood to the muscles of heart, thereby damag-
ing it. Some parts of heart muscle system, or in several instances all parts, may not
receive the requisite amount of oxygen-rich blood. Such parts of heart may then get
damaged, resulting in its dysfunction.

12.1.5 Cardiomyopathy

In this condition, injury to the heart occurs because of a wide array of causes other
than blood supply or artery anomalies, which are drug or liquor abuse or underlying
infections.

12.1.6 Treatment

Global hypokinesia can be preserved on the basis of its different stages. There are four
stages of this disease which are described as follows:

12.1.7 Stage A

Global hypokinesia patients include those individuals who have high susceptibility
toward emerging heart failure risk, in addition to those having diabetes, hypertension,
metabolic syndrome, and coronary artery disease, a history of alcohol misuse, cardio-
toxic drug treatment, rheumatic fever, and a family history of cardiomyopathy. The
treatment procedure typically used for this includes leaving smoking and prohibited
drug and liquor misuse, regular physical exercise, treating fat anomalies and hyperten-
sion, and the use of instructed medications ACE inhibitors.
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12.1.8 Stage B

Stage B includes systolic left ventricular dysfunction patients with no previous symptoms
that could lead to heart failure, along with those having cardiomyopathy, valve disease,
and prior heart attack. The treatment typically used under this stage in addition to that
with Stage A treatments includes doctors endorsing aldosterone inhibitor drugs, surgical
patchup, or replacement of the damaged artery or valve.

12.1.9 Stage C

Stage C patients experience symptoms of Stage A and Stage B along with symptoms
such as fatigue, breathlessness, and decreased stamina for exercising. The treatment typi-
cally used under this stage in addition to Stage A treatments includes doctors endorsing
aldosterone inhibitors for chronic symptoms digoxin and diuretics, a nitrate/hydralazine
gathering to African�American patients with decided pointers; utilization of
Implantable Cardioverter Defibrillator (ICD) as well as cardiovascular resynchronization
treatment, that is, biventricular pacemaker, monitoring weight, regulated consumption
of liquids and salt, and discontinuation of medications that amplify global
hyperkinesia�related heart failure.

12.1.10 Stage D

Systolic heart failure patients who have progressive symptoms even upon receiving the
best medical care fall under this category. The treatment typically used under this stage
is that in addition to that for Stage A, B, and C, doctors go with the recommendation
such as ventricular-assisting devices, continuous administration of intravenous inotropic
drugs, research treatments, heart transplant, other surgical mediations, and hospital or
palliative care.

12.1.11 Different imaging test

Different types of imaging tests that are used for examining heart include echocardiography,
chest X-ray, computed tomography (CT), and magnetic resonance imaging (MRI).

12.1.12 Echocardiography

Echocardiography, generally known as an echo or cardiac echo, is a sonogram of car-
diac system. Echocardiography uses normal 2D, 3D, and Doppler ultrasound to gener-
ate pictures of heart. The Swedish physician Inge Edler (1911�2001) also known as
the “Father of Echocardiography,” was the first person in his field to identify cardiac
infection using ultrasonic pulse echo imaging method. Echocardiography has grown
for characteristically use in analysis, organization, and continuation of patients with
apparent or well-known cardiac diseases [3]. It is broadly used in analytical tests in car-
diology. It can offer highly valuable data with size and outline of the heart with
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interior chamber size quantification, pumping function and site, and extent of the tis-
sue damage. An echocardiogram also provides doctors with other estimations of car-
diac function such as a calculation of the cardiac results, ejection fraction, and diastolic
function (Fig. 12.1).

The procedure of stress echocardiography can help understand whether chest ache
or accompanying symptoms are indications to heart disease or not. Echocardiogram pro-
duces ultrasound pictures of heart’s configuration and produces an accurate evaluation of
blood flowing from one side to another side in heart using Doppler echocardiography,
with vibrated or consistent wave Doppler ultrasound. This enables calculation of both
normal and abnormal blood flow from one side to another side of the heart. Both color
Doppler and spectral Doppler can be used to visualize any irregular communications
between the left and rights side of the heart, any dripping of blood through the valves,
which leads to valvular regurgitation, and to evaluate in what way, the valves open or
do not open in the case of valvular stenosis.

12.1.13 Chest X-ray

In medical imaging, X-ray imaging is a form of test that uses small amounts of radia-
tion to take photos of the bones, organs, and tissues of the body. When the part under
consideration is chest, this imaging identifies abnormalities from the norm or sicknesses
of the airways, heart, veins, lungs, and bones. A chest X-ray is needed if a patient is in
emergency room because of chest pain or had an accident that included impact on the
chest area [6].

The doctor can also recommend a chest X-ray if there is a plausibility of CHF
symptoms having a connection to the problems in chest. Such symptoms include chest
pain, fever, persistent cough, and smallness of breath. These symptoms could lead to

Figure 12.1 Image of electrocardiography [3].
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further conditions, which chest X-ray can detect, for example, broken ribs, heart fail-
ure, lung cancer, pneumonia. The other use for a chest X-ray is to see the size and
shape of heart. Abnormalities in the size and shape of heart can lead to issues with the
functioning of the heart. Doctors often use chest X-rays to monitor the progress after
surgery in the chest area. A lab typically generates pictures from a chest X-ray on large
sheets of film. When viewed against a lit background, the doctor can look for an array
of glitches, from tumors to damaged bones and heart problem. When the part under
focus is chest, X-ray helps detect abnormalities or diseases of the airways, heart, blood
vessels, lungs, and bones [7,8] (Fig. 12.2).

A chest X-ray is a simple, fast, and effective test that has been used for decades to
help doctors view some of the most important body organs. If a patient moves during
X-ray imaging, pictures might turn out blurry as the radiation passes through the body
and onto the plate, and denser organs, such as bone and the muscles of heart, will
appear white.

12.1.14 Computed tomography

A CT scan or CAT scan is a test that uses X-rays to view specific areas of body. These
scans use safe quantities of radiation to produce detailed pictures of the body. A cardiac
CT scan is used to check heart and blood vessels. During this test, a specialized dye is
injected into patients’ bloodstream. The dye is then viewed under a special camera in
a hospital or testing facility [9]. A heart CT scan, also known as coronary CT angio-
gram, is used to view the arteries that bring blood to heart. The test is known as coro-
nary calcium scan if they are used to diagnose whether there is accumulation of

Figure 12.2 Image of chest X-ray (The Anatomy Project, 1997).
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calcium in heart. Doctors may recommend a heart CT scan to view some conditions
such as birth defects in the heart like congenital heart disease, buildup of a hard sub-
stance called lipid plaque, which can block coronary arteries deficiencies, or wounds
to the heart’s four primary valves where blood clots within the heart’s chambers
tumors in or on the heart. A heart CT scan is a general test for people having heart
problems, since it allows doctor to explore structure of the heart and the head-to-head
blood vessels without making any cut or wound or insertion of any device into body.
A heart CT scan has very few risks involved. Most dyes used for CT scans contain
iodine, which is later flushed by kidneys from the body. While characteristically harm-
less, this is an important issue for pregnant women. The levels of radiation are well-
thought-out safe for adults, and there have been no documented side effects from low
levels of radiation but not for a developing fetus [10�12] (Fig. 12.3).

A heart CT scan procedure is accomplished in a hospital’s radiology department or
a clinic that specializes in diagnostic methods. This medication (Metoprolol
(Lopressor), propanolol (Inderal), and atenolol (Tenormin)) slows down heart so that
clearer images can be taken. At the start of the scan, patient lies down for rests on a
seat or bed. In addition, there is a need to hold breath during brief individual sweeps,
which last just 10�20 seconds. To start the scan, the radiologist moves the table via a
remote from a separate room into the CT machine. In most cases, patients go through
the machine several times. The whole test should take no longer than 10 minutes.

12.1.15 Magnetic resonance imaging

MRI uses magnets and radio waves to generate an image of body’s internal organs
without making a surgical cut or a wound. It allows doctor to view the soft tissues in
body, along with bones. An MRI can be done on any part of body, although a heart
or cardiac MRI exactly shows the heart and nearby blood vessels. Distinct from a CT
scan, an MRI does not use radiation. It is considered a safer alternative for pregnant
women. If possible, it is the best to wait until after the first trimester [13].

MRI is a noninvasive procedure, which means it does not involve the introduction
of any instruments into the body. MRI involves a commanding magnetic field, radio
frequency pulses, and a computer system to yield thorough images of organs, soft tis-
sues, bone, and almost all other internal body parts. Detailed MRI allows physicians to

Figure 12.3 Image of cardiac CT.
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diagnose numerous parts of body and define occurrence of definite diseases. The
images generated by machine can be used to examine on a computer monitor printed
or copied to a CD and transmitted electronically. Cardiac MRI uses a powerful mag-
netic field, radio waves, and a computer system to produce whole images of the struc-
tures inside the heart. MRI is used to diagnose cardiac disease and estimate the heart’s
structure and role in patients through congenital heart disease. Cardiac MRI does not
use ionizing radiation as normal MRI, and it provides pictures of the heart that are
better than other imaging methods. The magnetic field is not dangerous, but it may
cause some medical devices to breakdown.

Cardiac MRI is used to help doctor in diagnosing cardiac disease by:
1. Calculating the structure and work of the heart chambers, valves, size, and blood

flow through main vessels and surrounding structures such as the pericardium.
2. Calculating influence of coronary artery disease such as limited blood flow to the

heart muscle and scarring within the heart muscle after a heart attack.
3. Scheduling a patient's action for cardiovascular disorders.
4. Monitoring the progression of certain disorders over time.
5. Calculating the anatomy of the heart and blood vessels in children and adults with

congenital heart disease (Fig. 12.4).
The MR scanner captures this energy and produces output in the form of images

of the tissues scanned on the basis of this information. By passing electric current
through wire coils, the magnetic field is generated in most MRI components. Other
coils, placed in the machine or positioned around the part of the body being imaged,
send and receive radio waves, generating signals that are sensed by the coils. A com-
puter then routes the signals and creates a series of images, each of which demonstrates
a thin slice of the body. The images can then be considered from different angles by
radiologist [14�16].

12.1.16 Benefits of magnetic resonance imaging

1. MRI does not involve an insertion of instruments into the body, and this tech-
nique does not include contact with ionizing radiation.

Figure 12.4 Image of MRI.
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2. MRI images of the heart are better than other imaging methods for certain conditions.
This advantage makes MRI a precious tool in premature analysis and estimation of
certain cardiac abnormalities, particularly those including the heart muscle.

3. MRI has proven reliable in analyzing a wide variety of conditions, involving cardiovas-
cular anatomical anomalies such as congenital heart defects, functional abnormalities
like valve failure, tumors, and conditions associated with coronary artery disease and
cardiomyopathy.

4. This imaging can be taken in account during certain interventional procedures,
such as catheter-based ablation procedures to diagnose irregular heart rhythms,
involving atrial fibrillation. The use of MRI imaging can significantly shorten the
time required to accomplish these procedures, resulting in enhanced accuracy.

5. MRI allows the detection of abnormalities that might be covered by bone when
using other imaging methods.

12.1.16.1 Risks associated with the use of magnetic resonance imaging

1. MRI test does not pose much hazard to an ordinary patient when adequate guide-
lines are adopted.

2. If a sedative is used to induce a state of calm or sleep, there are risks associated
with excessive consumption of the same.

3. While a durable magnetic field is not harmful in the situation, entrenched medical
devices that have metal that can malfunction or cause problems during an MRI
exam.

4. Nephrogenic systemic fibrosis is presently a familiar, rare, and tricky situation of
MRI supposed to begin when the injection of high doses of gadolinium-based
contrast material is introduced in patients with very poor kidney functioning.

5. There is a very minor threat of an allergic effect if contrast material is injected.
These effects are generally minor and simply controlled via medication.

12.1.17 Limitations for cardiac magnetic resonance imaging

1. High-quality images are generated only if the procedure is conducted properly, fol-
lowing breath-holding guidelines while the images are recorded. If patients are
nervous, confused, or in severe pain, they may find it hard to lie still during
imaging.

2. A person with weight on higher side may not fit into certain types of MRI
machines. The existence of a graft or other metallic object occasionally makes it
hard to get clear images.

3. A very uneven heartbeat can affect the quality of images acquired using techniques
that time the imaging on the basis of the electrical action of the heart, such as
electrocardiography. An uneven heartbeat or atrial fibrillation can cause ancient
rarities in cardiovascular MR pictures.
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4. The continuous gesture of the heart introduces difficulties in acquiring clear pictures.
These challenges can be overcome by numerous approaches such as synchronizing
the imaging with ECG outlining, carrying into line the imaging with breathing, or
repetitive short breath holds during imaging.

5. Obtaining detailed images of the coronary arteries and their subdivisions is harder
with MRI and hence is frequently done instead with cardiac CT or a more offensive
process using a catheter placed into the blood vessels via the groin or arm.

12.1.18 Heart disease classification using convolutional neural network

In the above section, we described the different imaging tests that are available. The
heart disease classification is done on an MRI image. Implementation was done by using
some open-source software. We will now discuss the technology used with regard to
establishing a system that can predict global hyperkinesis heart disease on the basis of
MRI datasets. Heart disease prediction involves various steps such as data collection,
labeling, and development of architecture for the classification, and the training and test-
ing of the developed model. Details of the methodologies are given below.

12.2 Materials

For the completion of this research, Operating System (OS) Window 10/Ubuntu18
was used. MicroDicome Viewer [17] was installed to view images. Anaconda was
installed as a virtual machine for the requirement of Jupyter Notebook. Python 3.6
was installed as a platform for Notebook. NumPy 1.11.2, TensorFlow [18], and Keras,
were installed as per requirement of Jupyter Notebook. The method was developed
on system having OS of 64 bit with RAM 16 GB, and the capacity of hard disk was
500 GB. In this research, MRI images were collected from the different sources and
labeled with the help of a radiologist.

12.3 Methods

The current work involves a number of steps to reach the conclusion. For each step, a
research plan was created that was customized to our needs; these steps involved MRI
data collection, processing of the collected data, extracting features from images, train-
ing and testing of data, and in the final step, there was development of model
(Fig. 12.5) [19].

12.3.1 Data collection

The data related to cardiac MRI images was collected. There were 30 patients of each
set with 900�1200 images depending upon cases. The images Were in Digital
Imaging and Communications in Medicine (DICOM) format with different folders of
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images for categorization of them. These folders had names in medical terms with the
number of the folders with each name:
1. trufi_loc_multi having two folders of this name.
2. trufi_loc_multi@isocenter having a single folder.
3. haste_16-sl_tra-db-pace having two folders of this name.
4. haste_16-sl_tra-db-pace-RESP having a single folder.
5. tf2d18_retro_iPAT_12s.SA having 13 folders of this name according to the beat.
6. tf2d18_retro_p2_2CH(VLA) having 13 folders of this name according to the beat

(Figs. 12.5 and 12.6).

12.3.2 Direct DICOM images

In this method, images used for feature extraction were first processed by the software.
DICOM viewer software was used for DICOM images. This software read all the
images and displayed them so that there was as less as possible loss of information
when features were extracted from images. The images were taken from the patient’s
folder image set of each folder named [20].

12.3.3 Merge DICOM images

In this work, AMIDE software was used to merge DICOM images. The group of all
patients were made on the basis of their categorization of MRI. The 30 patients

Preprocessing of data 

Collection of data from different sources 

Normalization of data 

Convolutional neural network   

Model generation/training of model on train data

Model validation/testing of predicted model 

Data fusion

Figure 12.5 Methodology flow chart.
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having disease with their merged image was compared with the single merged image
of a healthy patient. Further processing on image was then performed (Fig. 12.7).

Steps used for Jupyter Notebook [21]:
1. Step 1: After installation of Jupyter Notebook, we need one Integrated

Development Environment named Anaconda.
2. Step 2: Install the libraries and the other repository to work on the system for run-

ning the convolutional neural network (CNN) on the images.
3. Step 3: Install the libraries, namely, NumPy, TensorFlow, Keras, Matplotlib, OS,

and CV2, for making the pipeline.
4. Step 4: Develop pipeline for the prediction of heart disease from the image dataset.
5. Step 5: Measure the accuracies in different sample size split between training and

testing dataset.

Figure 12.6 Image sets view on microdicom.
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12.3.4 Preprocessing of the images form the data set

The dataset has been described in the previous segment. The complete dataset is avail-
able for the further studies and other computational research. In this method, images
were used for running the CNN. We divided the images into two categories: normal
(2ve) and hyper (1ve).

Data collection and preprocessing of data includes:
1. Involves the labeling of data
2. Correction of data
3. Removal of noisy, corrupted, and distorted images form the data set (Figs. 12.8 and 12.9,

Table 12.1).

Figure 12.7 Hyperkinesia convolutional neural network classifier.
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12.3.5 Data fusion

Data fusion or assembling is the process of integrating the information about the preprocessed
data to obtain comprehensive and specific results. Generally, data fusion is divided into three
parts, namely low level image, feature level, and decision-level. After preprocessing the images

Figure 12.8 Data preprocessing.

Figure 12.9 Preprocessing of image.

Table 12.1 Table showing the original dataset.

S. no. Type RAW image dataset Processed image

1 Normal image 13,540 12,596
2 Hyperkinesis image 22,855 20,554
3 Total 36,395 33,150
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of different patients, we had the images in different folder labeled according to medical termi-
nology. Next step involved the fusion of all the images on the basis of the normal images,
which showed the negative sign and the positive image of patients with the disease. The
dataset was labeled with the normal and hyper for the training the model with CNN, on
which further classification was done and the model predicted the results (Fig. 12.10).

12.3.6 Data normalization and randomization

Data normalization is the process applied for the data preparation for the deep learning
models. The objective of data normalization is to change the estimations of numeric
segments in a dataset to utilize a typical scale, without misshaping contrasts in the
images, scopes of qualities, or losing information within the dataset. Normalization is

Figure 12.10 Labeling of the data set for the classifier.
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likewise required for certain calculations to display the preprocessed data correctly. In
our dataset, we have the images of different patients ranging from different image size.
Thus everything in the dataset should be normalized. For normalization, we used the
inbuilt function via batch normalization and every image in the dataset was set up to
minimal image size for running through the CNN. The images in the dataset were
converted to grayscale for the binary classification. After getting the heart image data,
we needed to randomize the dataset so that our model could simultaneously learn
both the features. The shuffling of the entire dataset was done through the randomiz-
ing function available in the Python library (Fig. 12.11).

Figure 12.11 Image showing the normalization of the feature in the data set.
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12.3.7 Model generation

CNN pipeline written in Python was used for training and testing the model on the heart
image dataset. The dataset is labeled as positive and negative in the TensorFlow pipeline.
The training dataset was run with the input feature labels in the classifier. In the classifier,
for the prediction form the preferences used the binary cross entropy for the loss function,
Adam optimization, accuracy, batch size, validation splits and cross validation folds for the
training and testing rounds (Fig. 12.13). The Fig. 12.13 displays the accuracies on different
epochs with accuracy on the validation set and validation loss. (Figs. 12.12 and 12.13). The
Tables 12.21�12.24 shows the accurcies along with the time stamp when the dataset is
splitted into different rations for traing and testing purpose. After when the training and
testing validation we can use one of the model or a hybrid based approch for make a GUI
(Graphical User Interface) to make a computation based prediction on the real time data
sets.

Figure 12.12 Different size of the data for training and testing the model.
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12.3.8 Convolutional neural network

In this section we will discuss CNN and the related concepts. CNNs have a long history
starting with the perceptron algorithm in 1958 [22]. Although they can be explained
intuitively as models that learn visual filters to recognize high-level image features,
understanding the functionality of neural networks first can facilitate understanding how
CNNs work. In the following, the perceptron, its extension to the multilayer percep-
tron, feed-forward neural networks and the basics of CNNs are explained. The work
below shows the different layers used in the CNN based architecture.

12.3.9 The perceptron

Rosenblatt designed the first learning neural computer, the perceptron, in 1958 in an
effort to mimic human learning [22]. A neuron’s dendrites are modeled by weights, which
are multiplied with input values. Additionally, a bias value is added to model a neuron’s
required activation potential. Afterward, the multiplied values and bias are summed up in
the cell body and passed through an activation function to produce an output representing
the firing rate in the neuron. This architecture is shown in Fig. 12.14.

The perceptron is a linear classifier defined by weights wi, and bias b and an activa-
tion function f(x) according to Fig. 12.14. It is possible to merge the bias with the
weights by using homogeneous coordinates, that is, putting the bias at the bottom of
the weight vector and adding a constant 1 to the input vector x. Different activation
functions, which are discussed in the next section, can be used, but the original per-
ceptron uses the heavy-side step function, resulting in a binary output. Therefore the
perceptron is a linear classifier, and its weights define a hyperplane as a linear decision
boundary between classes. Thus its representational power is limited; it is not possible

Figure 12.13 Figure showing the running CNN architecture on the data set use binary_crossentro-

py for loss, optimizer as Adam, and accuracy matrices to test and validation results.
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to model, for example, an XOR function using a perceptron, since no line can be
drawn to separate the classes as shown in Fig. 12.15.

12.3.10 Neural network

To overcome the limited representational capabilities of a single perceptron, neural
networks were developed. In a neural network, or artificial neural network, multiple
perceptrons, also commonly referred to as units or neurons, are connected in acyclic
graphs, although one of the most common architectures is that of the multilayer per-
ceptron in which the neurons are organized in layers. There are input and output
layers and additional hidden layers that increase network size and complexity.
Fig. 12.16 shows an example of this layered architecture.

Multilayer perceptrons are universal approximators, that is, they can approximate
any continuous function and thus do not suffer the same limitations as a single percep-
tron [23].

Typically, the layers are fully connected, meaning that every neuron is connected
to each neuron of the previous and next layers. However, neurons of the same layer
are not connected to each other. The number of units in each layer and the number
of layers have to be chosen and result in networks that approximate functions of

Figure 12.15 The XOR function creates a not linearly separable set. The two classes red and blue

cannot be separated by a single straight line.

Figure 12.14 The perceptron model with weights wi, inputs xi and bias b [23].
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varying complexity. It can be difficult to find a good architecture, as using too many
units and layers may result in a complex function that overfits training data, and
choosing too few units can produce a biased function that is too simple to adequately
represent the data distribution (Fig. 12.16).

Historically, the sigmoid function has been used as activation function for neurons,
as it can be easily interpreted as firing rate of a neuron. The hyperbolic tangent func-
tion has a similar form but is zero-centered. Since 2010, the rectified linear unit
(ReLu) has become the de-facto standard, as it improves training speed and does not
suffer from gradient vanishing [24,25]. Output units do not have any activation func-
tion, so that they can produce arbitrarily valued output.

Neural networks can be trained, that is, the network can learn weights, by defining
a loss function (also called cost or objective function) and using the backpropagation
algorithm to adapt weights. An example of a loss function is the sum-of-squared-
distances. The backpropagation algorithm works by calculating the loss from the cur-
rent network output and a ground truth and computing a weight update from it by
passing the error backward through the network [26] This is straightforward for the
output layer, as the error can be used directly. For hidden layers, however, a sensitivity
for the unit has to be calculated using the activation function’s gradients. The sensitiv-
ity is then used to distribute the error backward through the network.

12.3.11 Convolutional neural network

Standard neural networks do not handle shifts and distortions in images, which occur
frequently in image datasets, since objects are usually not perfectly aligned or appear
multiple times in the same image. However, despite these drawbacks, neural networks
should still be able to learn robust features. Therefore LeCun et al. developed CNNs,
which are designed specifically for computer vision applications introducing shift and
distortion invariance [26]. A sample network is shown in (Fig. 12.17).

Using convolutional layers, the networks are able to learn to recognize local fea-
tures, such as edges or corners, by restricting the receptive fields of hidden units to
local connectivity and to add shift invariance by enforcing spatially shared weights.

Figure 12.16 A multilayer perceptron with two hidden layers [24].
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Furthermore, spatial or temporal subsampling in the form of pooling layers reduces
sensitivity to shifts and distortion (Fig. 12.17).

The architecture of CNNs is made up of distinct layers that are usually arranged in
multiple stages [27,28]. The basic layers include convolutional layers, nonlinearities,
pooling layers, and fully connected layers. One stage may comprise a convolutional
layer to learn filter banks a nonlinearity identical to the activation function in standard
neural networks and a feature-pooling layer. In the first level, such a stage typically
learns simple visual features such as edges or color blobs. The second stage then com-
bines the previous level’s features, for example, learning corners as combinations of
edges. Adding more stages results in more complex high-level features, such as faces,
depending on data and application.

Convolutional layers consist of multiple filters that are defined by their weights.
The layer defines the number of filters and their kernel size, the stride in which they
are applied, and the amount of padding to handle image borders. Examples of filters
learned in the first convolutional layer are shown in Fig. 12.18 [29]. The convolved
output of a filter is called a feature map and a convolutional layer with n filters creates
n feature maps, which are the input for the next layer. For backpropagation, the gradi-
ent of the convolution is required, which is the forward-pass convolution with
weights flipped along each axis (Fig. 12.18).

Figure 12.17 The Lenet convolutional neural network architecture with convolutional and pooling

layers [26].

Figure 12.18 Filter weights learned by the first convolutional layer in AlexNet [29,30].
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Pooling layers reduce feature map resolutions and thereby the sensitivity to shift
and distortions, as exact feature location is discarded and only relative and approximate
location information remains. Max-pooling selects the maximum output from a local
receptive field and is applied in a sliding-window fashion similar to convolutions.
Fig. 12.19 shows the result of max-pooling. To obtain the gradient, it is necessary to
store the original location of the selected maximum value, since maximum operations
act as a routing mechanism in neural networks. An additional benefit of pooling layers
is reduced memory cost. For example, 22 max-pooling results in output feature maps
with half the input’s width and height (Fig. 12.19).

One method that is applicable to CNNs is transfer learning, where a network is
pretrained with a dataset and subsequently fine-tuned to another dataset. In this case, a
network is pretrained ideally on a large dataset to learn robust filters and features that
are generalizable to new data and then trained with application-specific data benefiting
from features identical or similar to the pretrained ones [31] (Fig. 12.20).

Figure 12.19 Max-pooling of 25 feature maps. Fully convolutional layers work identically to hidden

layers of a standard neural network. They can be used at the end of a convolutional neural network

after several stages to compute arbitrary features and output scores (cf. universal approximators) [29].

Figure 12.20 Neural network input layer, hidden layer, output layer.
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Since 2010, CNNs have been applied to various computer vision tasks and have
been developed further [32]. Various architectures have been published and open-
source frameworks have been developed, creating large user bases [32,33].
Furthermore, several important robustness-increasing techniques have been developed,
such as dropout and batch normalization, which allow higher learning rates for faster
training while minimizing the degree of overfitting [34,35]. These and other improve-
ments are discussed in the related work.

12.3.12 Results of heart disease prediction using convolutional neural
network

As stated earlier, MRI datasets were taken. The steps were followed to obtain the
maximum accuracy of input MRI images. First, training of the system was accom-
plished by using different dataset or sample, and then the system was tested for few of
the given samples, and accuracy was measured. The image set was partitioned into
two portions. The first portion was used for trainingstem and the second was used for
testing purpose. Sixty percent of the image set was used as training, and th the sye
remainder 40% was used for the testing set. For each image set, features were figured
out and stored for training the of data. The result summary is shown in Figures. The
table given below display the results obtained from the program. The variance is very
small, but it is there. Following are main results of MRI images (Figs. 12.21�12.24,
Tables 12.2�12.4).

12.4 Conclusion/summary

This chapter entitled “Heart Disease Prediction Using Convolutional Neural
Network” was carried out in Department of Biotechnology and Bioinformatics at
Jaypee University of Information Technology Waknaghat Solan. The summary of the
findings is as follows:

THREE EPOCHS

Training set (23205) Validation set(9945)

Epochs Timestamp Loss Accuracy Val loss Val accuracy

1 854s 37ms 0.1862 0.9241 0.1378 0.9507

2 868s 37ms 0.1285 0.9434 0.1237 0.9454

3 858s 37ms 0.1217 0.9468 0.1297 0.9350

Figure 12.21 Training and test accuracies the given data set three epocs.

267Heart disease prediction using convolutional neural network



1. Hyperkinesia (i.e., hyperkinesis moment disorder), term derived from the ancient
Greek language, describes the abnormal or restless state and excessive movement of
the heart or combination of both. These image prediction methods typically rely
on machine learning/DL here in the current author has devleoped a computational
based prediction method for the cardiovascular heart diease (Hypokinesia).

TEN EPOCHS

Training set (16575) Valida on set(16575)

Epocs Timestamp Loss Accuracy Val Loss Val Accuracy

1 719s 43ms 0.2112 0.9116 0.1437 0.9441

2 750s 45ms 0.1311 0.9440 0.1655 0.9319

3 669s 40ms 0.1248 0.9463 0.1367 0.9484

4 667s 40ms 0.1156 0.9482 0.1300 0.9383

5 712s 43ms 0.1138 0.9498 0.1331 0.9406

6 701s 43ms 0.1115 0.9509 0.1225 0.9485

7 725s 44ms 0.1090 0.9511 0.1888 0.9481

8 715s 43ms 0.1063 0.9527 0.1232 0.9517

9 725s 44ms 0.1044 0.9525 0.1159 0.9459

10 695s 42ms 0.1035 0.9531 0.1257 0.9440

Figure 12.23 Training and testing accuracy on the ten epocs with equal data for training and

testing.

TEN EPOCHS

Training set (23205) Valida on set(9945)

Epocs Timestamp Loss Accuracy Val loss Val accuracy

1 854s 37ms 0.1800 0.9264 0.1334 0.9439

2 898s 39ms 0.1264 0.9458 0.1350 0.9501

3 855s 37ms 0.1157 0.9484 0.1315 0.9422

4 809s 35ms 0.1117 0.9500 0.1222 0.9451

5 802s 35ms 0.1072 0.9507 0.1264 0.9517

6 850s 37ms 0.1065 0.9510 0.1188 0.9483

7 855s 37ms 0.1048 0.9515 0.1149 0.9513

8 868s 37ms 0.1030 0.9532 0.1159 0.1159

9 856s 37ms 0.1022 0.9519 0.1192 0.9432

10 858s 37ms 0.0999 0.9539 0.1166 0.9459

Figure 12.22 Training and testing accuracy on the ten epocs with decreasing loss in the data set.
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FIFTEEN EPOCHS

Training Set (26520) Validation Set(6630)

Epocs Timestamp Loss Accuracy Val Loss Val Accuracy

1 895s 34ms 0.1776 0.9282 0.1270 0.9477

2 879s 33ms 0.1273 0.9454 0.1168 0.9446

3 923s 35ms 0.1197 0.9473 0.1137 0.9495

4 989s 37ms 0.1135 0.9494 0.1107 0.9525

5 950s 36ms 0.1099 0.9510 0.1125 0.9498

6 965s 36ms 0.1077 0.9510 0.1093 0.9446

7 955s 36ms 0.1055 0.9522 0.1176 0.9373

8 958s 36ms 0.1044 0.9516 0.1106 0.9495

9 943s 36ms 0.1030 0.9523 0.1062 0.9511

10 953s 36ms 0.1020 0.9523 0.1108 0.9523

11 986s 37ms 0.1004 0.9535 0.1065 0.9516

12 997s 38ms 0.1011 0.9534 0.1085 0.9501

13 934s 35ms 0.1001 0.9541 0.1113 0.9404

14 950s 40ms 0.0982 0.9534 0.1110 0.9516

15 940s 25ms 0.0980 0.9530 0.1102 0.9510

Figure 12.24 Training and testing accuracy on the fifteen epocs data for training and testing.

Table 12.2 Table showing the dataset split into 70%�30% ratio for the training and testing

purpose.

S. no. Type Training set Validation set

1 Normal image 8817 3778
2 Hyperkinesis image 14,387 6116
3 Total 23,204 9894

Table 12.3 Table showing the dataset split into 90%�10% ratio for the training and testing

purpose.

S. no. Type Training set Validation set

1 Normal image 11,336 1259
2 Hyperkinesis image 18,498 2283
3 Total 29,843 3542
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2. Area number of different imaging tests exist for heart. With the help of artificial
intelligence, machine learning, and deep learning method, we have implemented
an architecture for the prediction of this disease and used the Python TensorFlow,
NumPy, and other libraries for the training and testing of the model.

3. Accuracies were measured in different sample size and the data was split into differ-
ent ranging into 70/30, 50/50,90/10 for the training and testing purposes.

4. Although over the years, a large number of prediction tools have been presented,
there is no such tool that works on cardiac diseases. There are some working in
area of MRI brain prediction, and yet, to date, to our knowledge, there is no
resource available that provides prediction tools for heart diseases.

5. It is expected that the availability of such a method would save time and effort of
specialists involved in this field and will help doctors and clinicians in diagnosis,
treatment, and prevention of heart diseases.

6. CNN and most powerful architectures are used in the field of machine learning
and deep learning. The technique is available online and in open-source form for
doctors, radiologists, medical practitioners, and researchers across globe
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13.1 Introduction

Coronary artery disorder is a common kind of coronary heart disease that is otherwise called
coronary heart sickness or ischemic coronary heart disease. Coronary artery disease (CAD) is
the contracting or obstruction of the coronary arteries, typically occur as a result of athero-
sclerosis. Atherosclerosis is correspondingly known to occur because of “toughening” or
“blockage” of the arteries and the result of build-up of LDL-cholesterol and fat accumula-
tion referred to as plaque present on the internal artery walls. These plaque causes restriction
blood glide into the heart muscle by means of obstructing the artery or by instigating
unusual artery tone and activity deprived of an enough delivery of blood, the heart will
become ravenous of oxygen as well as without critical nutriment it wishes to work appro-
priately which deliberately causes chest pain also known as angina [1].

With this condition in which the supply of blood to a part of the coronary heart
muscle reduces completely, or otherwise the energy requirements of coronary heart
turn out to be much more than the blood supply, a coronary heart attack (injuries to
the muscle) might also happen. It is seen that the calcium phosphate hydroxyapatite
deposition inside the muscular coating of the blood vessel appears to have an impor-
tant role in the hardening of the arteries and also induce the initial segment of coro-
nary arteriosclerosis. This is also observed in a metastatic medium of calciphylaxis as it
is known to occur in hemodialysis as well as chronic kidney disease [2].

Gradually, the interior of the artery progress in the formation of plaques of various
dimensions. Several plaque deposits are smooth on the interior side having a tough
stringy cap that covers the skin. If in case the surface crashes, the fatty and soft interior
is visible. The platelets (disc-shaped elements in the blood which assist coagulation)
arrive to the area, and blood clotting appears around the plaques. Epithelial tissue may
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similarly develop irritation and further fails to function accurately, inflicting the mus-
cular arteries to restrain at irrelevant periods [3].

13.1.1 Symptoms of coronary artery disease

If the coronary arteries are constricted, they cannot offer enough oxygen-rich blood to
the heart—particularly once it’s beating exhaust, like throughout the exercise. At first, the
shrunken blood flow might not cause any arterial sickness symptoms. As plaque continues
to make up in your coronary arteries, however, you will develop arterial sickness signs
and symptoms of chest ache (angina) [4]. It may also sense strain or tightness in the chest
as if people have been standing on your chest. This pain, is referred to as angina, com-
monly takes place on the center or left side of the chest. Angina is typically induced with
the aid of bodily or emotional stress. The ache typically declines inside after stopping the
severe activity. In some people, particularly women, this ache can also be fleeting or sharp
and can also be felt in the neck, arm, or back [5].

Shortness of breath: If your coronary heart cannot pump ample blood to meet your
body’s needs, you may also enhance shortness of breath or excessive fatigue with
exertion. Heart attack: A definitely blocked coronary artery will be the reason for a
coronary heart attack. The basic signs and symptoms of a coronary heart attack include
severe strain in your chest and ache in your shoulder or arm, on occasion with
dyspnea and sweating [4]. Women are extremely probable than guys to display less
traditional symptoms and signs of a coronary heart attack [3].

13.1.2 Risk factors associated with coronary artery disease

13.1.2.1 Age and gender

Getting older increases the risk of CAD by damaging and contracting the arteries. For
men and women between the ages 45�55 there are many risk factors to get CAD.
When compared to women, men are vulnerable to get cardiac complications easily.
Developing heart muscle weakening and arteries damage is the common problem in
aged people. Ethnicity is also a major risk factor for developing cardiac complications.
People who are older than 50 years may experience angina as well as dyspnea due to
abnormal function of heart. Physical inactivity can lead to fat and cholesterol deposi-
tion in major blood vessels [6].

13.1.2.2 Diet factors

Taking more amount of saturated fat, trans-fat, sugar, and salt is the risk of getting
CAD. These fats increase the blood cholesterol level and heart attack rate. Obesity
may result from an intake of saturated fat which causes various kinds of cardiac
complications [7]. The people who are obese will experience shortness of breathing
while walking and exercising. Increased level of cholesterol is the main risk factor to
get cardiac arrest. Abnormal cholesterol will destroy the normal metabolic function.
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Thus, the excess amount of cholesterol will get deposit in arteries through which
blood flows to the heart.

The cholesterol amount is maintained by several genes. If they get mutated, it will
elevate the risk of CAD. Low-density lipoprotein cholesterol leads to the formation of
plaque in the blood vessels. LDL cholesterol may increase by two major problems
causing fats (i.e., saturated fat and trans fat) that are present in beef and chicken skin,
butter, and some other dairy products. In healthy people, blood sugar level is main-
tained by insulin. In the case of diabetic conditions, they will have abnormal level of
blood sugar levels. Type 2 diabetes may disrupt the arteries and leads to various kinds
of heart disease [8] (Fig. 13.1).

Figure 13.1 Various risk factors associated with CAD.
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13.1.2.3 Lifestyle factors

Lifestyle factors like cigarette smoking, alcohol consumption, stress, and hypertension
may lead to severe level of CAD. Many studies reported that cigarette smoking is
strongly associated with CAD, myocardial infraction, and some other cardiac compli-
cations. Both active and passive smokers have equal chance to get cardiac vascular dis-
eases [9]. Drinking excess amount of alcohol can cause dangerous health
complications. Intake of alcohol increases the level of triglycerides in blood which are
strongly associated with CAD. Similarly, the alcohol consumption will affect the level
of blood coagulator factors as well as blood pressure. Because of this alteration, the
blood supply to the heart will disrupt. Long-term stress, hypertension, blood choles-
terol, blood sugar, and triglycerides can cause changes in the normal metabolic func-
tion and promote the accumulation of cholesterol in the major blood vessel. Mild
stress can also trigger heart problems by abnormal blood flow, gradual plaque forma-
tion in the arteries [10].

13.1.3 Coronary artery disease detection and diagnostics

13.1.3.1 Electrocardiogram

Electrocardiogram records the electrical signals which travel through the heart. It pro-
vides the information and evidence about previous heart attacks and also reveals the
problems at present. ECG records electric impulses from the patient for the diagnostic
purpose by placing electrodes on the skin. The recorded information will be monitored
and resulted as a graph of voltage versus time of electrical activity of the heart. Through
this graph, physician can diagnose the abnormal activity of the heart. Changes in the nor-
mal ECG pattern on the graph represent cardiac complications such as inadequate blood
flow to the heart, irregular cardiac rhythm, murmuring sound of heart, abnormal rate of
heartbeat, presence of damage in heart’s conduction system, blockage in arteries, and size
of the chambers [11].

13.1.3.2 Echocardiogram

Echocardiogram is the diagnostic test that makes use of high frequency of sound waves
to generate view of the heart’s wall, blood vessels, valves as well as chambers. It is also
known as cardiac ultrasound diagnostic technique. In this procedure, a probe called
transducer is allowed to bypass over chest region. This transducer assembles sound waves
that resile on the heart and resonate backward to the probe. These ultrasound waves are
transformed into images to monitor and diagnose the appropriate and exact complications.
Through this picture, tumor growth around valves, narrowing of blood vessels, size of the
heart, shape of the heart, position of the heart, thickness of the heart’s wall, infectious
growth in the arteries, functioning of heart’s valve, pumping strength, blood clots in the
chamber, presence of a hole in the middle of the two chambers and problems with peri-
cardium layer can be detected [11].
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13.1.3.3 Exercise stress test

It is also known as thread mill test which helps to identify the level of heart function-
ing. This test shows if there is a reduced blood supply to the heart. By the exercise
stress test, CAD can be diagnosed by physician at an early stage. It helps to determine
a safe level of exercise for the diseased patient and predict the risk of cardiac complica-
tions such as myocardial infarction and heart attack. Exercise stress test examines the
heart during times when it is working its hardest [12].

13.1.3.4 Nuclear stress test

Nuclear stress test gives the information about flow of blood to the heart by using radio-
active dye and an imaging machine. By performing this test, the reduced blood pass to
the heart and damage in the blood vessels can be identified. The procedure starts with
injection of radioactive dye, then taking images of the heart; first one while the person is
at rest and the other one will be taken after exertion. Nuclear stress test provides more
and clear picture of CAD and some other cardiac complications. To know how the
treatment works in the heart diseased person, the nuclear stress test can be used [13].

13.1.3.5 Cardiac catheterization and angiogram

Cardiac catheterization is the procedure that provides information about the blood pres-
sure and patterns of blood flow to the heart, whereas angiogram is the diagnostic test in
which a special fluid is injected into the major blood vessel, and the X-ray image will
be taken. This specialized dye will be visible under X-ray. Sometimes some cardiac
defects can be treated during this procedure called cardiac catheterization. This treatment
procedure followed by diagnostic procedure is known as therapeutic catheterization.
Angiogram is the commonly used diagnostic process to identify the blockage of valves,
abnormal activity of heart, and presence of hole between two chambers [11,13].

13.1.4 Prevention

Modification of behavior, blood pressure-lowering, lipid-lowering, antihypertensive and
statin therapy are the precaution measures taken to prevent the CAD. Arterial hypertension
and diabetes mellitus are the main reasons for CAD. Controlling blood strain maintains
sugar level in the blood as it primarily prevents CAD. Guidance is made for the control of
foremost cardiovascular hazard elements through moderate lifestyle and prophylactic drug
therapies. Lowering the tobacco use, building healthy food choices, living energetically
active, decreasing body mass index (too much less than 25 kg/m2) and waist�hip ratio,
lowering blood strain (too much less than 140/90 mmHg), reducing blood cholesterol (too
much less than 5 mmol/L or 190 mg/dL), lowering LDL cholesterol (too much less than
3.0 mmol/L or a 115 mg/dL), regulating glycemia levels, particularly in those with damage
fasting glycemia and reduce glucose tolerance or diabetes, taking aspirin (75 mg daily), as
soon as blood pressure has been controlled are ways to avoid CAD [14].
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The above figure shows the minimum that needs to attain in more or less sub-
groups of elevated vulnerable people, especially people with inherited cardiovascular
disorder or diabetes, a case can be made for lower goals for blood strain (130/
80 mmHg), avoiding stress, general LDL cholesterol and LDL cholesterol, which
might also need additional rigorous treatment, aspirin therapy, and hormone remedy
additionally have a great impact of lowering the chance of CAD, even though it is the
distinctive preventing system [15].

13.1.4.1 Modification of behavior

A variation of the way of life moderation takes to lessen blood pressure. These
involve weight loss in case of obesity, exercise activities, reducing alcohol intake,
multiplied sparkling fruit and veggies and less saturated fat diet, sodium intake, and
high potassium intake, changing the day-to-day activities, circular calorie balanced
diet, and so on.

13.1.4.2 Physical activity

Lifestyle is linked with an elevated chance of cardiovascular disease. Physical activity is
related to decreased probability of CAD in both men and women; over body weight
is related to CAD. Consistent physical activity significantly reduces the chance of
CAD. Regular exercise strengthens the cardiac muscle. It lowering LDL cholesterol,
blood pressure, then elevates high-density lipoproteins levels [16].

13.1.4.3 Diet

Dietary consumption of fat, fruits, vegetables, fish, and sodium are linked with CAD.
Omega-3 fatty acid plays a role in a modified lipid profile, lowering thrombotic ten-
dency, antihypertensive and antiinflammatory effects. Improving the intake of
vegetables and fruits reduces trans-fat in the body; trans-fatty acids increase the chance
of CAD. Foods that are rich in vitamin E and beta-carotene help to reduce the risk of
CAD, more than a teaspoon of sodium (per day) can raise blood pressure [15].

13.1.4.4 Alcohol and tobacco

Nicotine elevates blood pressure resulting in CAD. Tobacco can limit down the arter-
ies and injured heart valves alcohol consumption increases the levels of an alternative
type of fat in the blood the triglycerides, which are related to a high chance of coro-
nary heart diseases, alcohol has a miscellaneous consequence on coronary risk element
by elevating high-density lipoproteins-Cholesterol and triglyceride levels [16].

13.1.4.5 Blood pressure lowering

Arterial hypertension can form the destruction of arteries and make them more
likely to progress to atherosclerosis. Angiotensin-transmute enzyme suppression and
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angiotensin II receptor blockers help modify blood vessels to allow additional blood
flow (e.g., valsartan). Calcium channel blockers modify blood vessels by reduced cal-
cium from moving into muscle cells in the heart and blood vessels such as amlodipine
(Norvasc), bepridil (Vascor), and diltiazem [17].

13.1.4.6 Lipid lowering

Fibrates are mainly used for lowering triglycerides and raising low HDL levels.
Nicotinic acid is an effective HDL raising agent. These lipid-lowering drugs reduce
the risk of CAD. Cholesterol-lowering drugs can help lower your LDL cholesterol
and increase your HDL cholesterol such as atorvastatin (Lipitor) and fluvastatin (Lescol
XL). Bile acid and calcium chloride help to reduce cholesterol in the blood. Examples
include cholestyramine (Prevalite), colesevelam (Welchol), and colestipol (Colestid).
Fabric acid derivatives (fibrates) increase HDL cholesterol and lower triglycerides such
as clofibrate (Atromid-S) [16].

Drugs for clot prevention

Plaque build-up in arteries makes additional clot formation. A clot could partially or
completely block the blood flow to the heart. These capsules together prevent blood
clots: Apixaban (Eliquis), clopidogrel (Plavix), dabigatran (Pradaxa), enoxaparin
(Lovenox), rivaroxaban (Xarelto), ticagrelor (Brilinta), ticlopidine (Ticlid), and warfarin
(Coumadin) [17].

13.1.4.7 Antihypertensive and stain therapy

Cholesterol-decreasing agents mixed with antihypertensive therapy prevent cardiovas-
cular activities and also a pill carry the complex of the antihypertensive amlodipine
desolate, lipid-lowering remedy atorvastatin calcium (SPAA) it increase adherence to
lipid-reducing and decrease cardiovascular occasions [16].

13.1.5 Genetic factor

Genetic predisposition is the main risk factor of developing CAD and vascular disease.
The genetic variations are highly associated with hypertension, inflammation, cholesterol
maintenance, triglyceride—metabolism and various metabolic pathway. LDLR and
PCSK-9 genes help to regulate the cholesterol in the blood in maintaining the LDL
receptors. When those genes get mutated, it will cause increased level of LDL receptors
and accumulates in the blood vessels. Variations at NOS3 and GUCY1A3 are highly
related to CAD by gradually increasing blood pressure. Genetic variants in chromosome
9 are associated with irregular lipid levels and abnormal metabolic functions [18].

CAD is known to be caused by multiple factors [19]. Together with the risk factors
such as hypertension, age, gender, family history, diabetes mellitus, and smoking the
most recent research studies have proved the involvement of environmental and
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genetic factors in the progression of CAD [20,21]. Remarkably, the RAS which regu-
lates the blood pressure is evidenced to have a critical role in the pathophysiology of
CAD. The renin�angiotensin system is found to be a main regulatory entity in the
physiology of the cardiovascular system. This involves the remodeling of cardiovascular
system, sustainment of the vascular tone as well as homeostasis of sodium [22].
Numerous findings have indicated major verdicts about the involvement of the single-
nucleotide polymorphisms (SNPs) of RAS which further leads to the development
and advancement of CAD in some susceptible individuals.

13.1.5.1 Angiotensin converting enzyme gene

ACE determines the vasoactive peptide called Angiotensin II which is involved in the
RAS pathway [23]. The ACE is very common in the renin�angiotensin�aldosterone
system as well as in the kinin�kallikrein system. It is known to be a zinc metallopro-
teinase that splits the terminal of histidine�leucine dipeptide of Ang I and thus turns it
into Ang II which is an extremely constricting component. Because of the intrusion of
these two systems, the ACE thereby deactivates the bradykinin which is a vasodilating
component. Through these roles, the ACE is known to maintain the vascular tone as
well as the sodium homeostasis [24,25].

The ACE gene is situated at the chromosomal location 17q23 which is known to
have a size of 21 kb and also comprises 25 introns and 26 exons [26]. The polymorphism
of ACE involves several insertions and deletions specifically present in the intron 16.
Therefore, from the polymorphism present in the intron 16 there are known to be three
main genotypes such as insertional homozygote (II), heterozygote (DI), and teletional
homozygote (DD). The serum levels of ACE are resolved by the genetic polymorphism
in the order DD. ID. II [27]. The aforementioned SNP is proved by several studies to
have a link with the interpersonal inconsistency of the ACE levels found in the blood
which circulates in the body [28]. The allele which gets deleted at the gene location of
ACE is linked with amplified activity of the plasma ACE [29].

An additional polymorphism seen in the ACE gene is known to be silent as well as
synonymous coding SNP with an rsid 4343 (2350A.G) present in the exon 17.
Various research findings have proved the link between ACE I/D rs4340 and
2350A.G SNPs which progress to several ailments such that systemic lupus erythem-
atous, increase in blood pressure, Alzheimer’s disease, CAD, renal disease, and diabetic
nephropathy [30,31].

13.1.5.2 IL-10 gene polymorphism

It is known that inflammation has a pivotal role in the development and progression of
atherosclerotic-related vascular ailments [32]. Interleukins are identified as a group of cyto-
kines, which were initially documented as vital agents that participate in the inflammatory
responses by the host [33]. The interleukin 10 (IL-10) is produced by the TH2 cells and the
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macrophages. IL-10 is identified to be a notable antiinflammatory cytokine with the pres-
ence of potential neutralizing properties on both T cells as well as macrophages. IL-10 is
known to be manifested in the human atherosclerotic plaques which plays a role as a defen-
sive factor in atherosclerosis by stabilizing the pro-inflammatory cytokine movement and
thereby also decreases the plaque variability and improves the diagnosis [34,35].

It is being evidenced that decrease in the serum levels of IL-10 is linked with a more
adverse diagnosis in the patients having acute coronary syndrome [36,37]. The IL-10 gene
is situated in chromosome 1, and it is also known to have five exons and is also mapped
between the intersection amongst 1q31 and 1q32 [38]. Various SNPs found in the pro-
moter region of the interleukin-10 gene like IL-10�819 C/T, IL-10�1082G/A, and IL-
10�592C/A are evidenced to be intricated in the regulation and expression of IL-10 gene
that can also impact the predisposition of CAD [39]. IL-10 gene is identified to have vari-
ous sites such as microsatellites and SNPs which affect the IL-10 expression levels. Thus, it
might be directly or indirectly linked in the progression of CAD [40] (Fig. 13.2).

13.1.5.3 Angiotensinogen gene

The AGT is known to be formed by the liver cells, which is altered to angiotensin
through renin. After this the angiotensin I is altered to angiotensin II, further leading
to fibrosis, vasoconstriction, and myocardial hypertrophy. The AGT gene comprises
five exons. It is located in the chromosomal location 1q42�43 position [41].
A replacement of threonine to methionine at the amino acid 174th position is a fre-
quently occurring polymorphism which is also called rs699 or T174M terming the T
and M alleles separately [42]. Over the last several decades, the AGT SNP T174M has
been studied to find its link in the progression of CAD.

The T174M polymorphism was initially investigated to find out the relationship
between the aforementioned polymorphism and myocardial infarction (MI) [43]. The
outcome exhibited that the genotype distribution of T174M had no difference amongst
the cases and control groups and no substantial link leading to CAD was found.
Afterward, few studies on the same topic were carried out but none of the studies estab-
lished the association between AGT T174M SNP and risk of developing CAD [44]. The
inconsistency in the literature search might be because of varied factors comprising of
the genetic framework in the diverse ethnicity. In view of the important role exhibited
by these three genetic polymorphisms in the development and progression of coronary
artery disease a meta�analysis study was conducted inorder to find out the susceptibility
of these polymorphisms and the risk of developing CAD at an early phase.

Aim

The current meta-analysis was performed to attain a more specific investigation on the
link between the polymorphisms ACE (rs4340), IL-10(rs1800896), and AGT (rs699)
and the risk of developing CAD.
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13.2 Methodology

13.2.1 Literature search

The previous investigations which displayed the link between ACE, IL-10, and AGT poly-
morphisms with the increased risk of developing CAD were scrutinized from various elec-
tronic databases such as Embase, Web of Science, Google Scholar, and PubMed from 2000
to 2021. Different Mesh terms were used for the extensive search like “CAD” or
“Coronary Artery Disease,” “SNP” and “Polymorphisms” and “ACE or angiotensin-
converting enzyme” and IL-10” or “Interleukin 10” and “AGT” or “Angiotensinogen”
and “rs699” and “rs4340” and “rs1800896.” All the selected studies were human-related
case�control studies. The outcome was compared with each other and thereby resolved.

Figure 13.2 Genetic polymorphisms associated with CAD.
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13.2.2 Selection criteria

The studies suitable for this meta-analysis had to satisfy some of the detailed inclusion
standards such as CAD-related case�control study, evaluation between the association
among ACE, IL-10, and AGT genetic polymorphisms and progression to CAD, pres-
ence of allelic and genotypic frequencies of the polymorphisms, full-text articles, only
English articles will be selected for further study, meta-analysis papers will be included.
The odds ratio (OR) and its corresponding confidence interval (CI) were also taken
into account for the study. The articles that were excluded are other language articles,
review articles, abstracts, and animal studies.

13.2.3 Extraction of data

The data were retrieved from each study based on the first author name, journal name
and year of publication, population, and PMID. The extracted articles were properly
checked for the following information such as allelic and genotypic frequencies of
patients and control participants. The frequencies were derived from each genetic
polymorphism separately and were compared with the cases and controls of the study.
The OR along with its CI, P-value, distribution of genes, method of genotyping, and
the HWE values were extracted from the selected articles for further calculations.

13.2.4 Statistical analysis

The derived allelic and genotypic data from the previous studies were carefully pooled.
From these data, the minor allelic frequencies were calculated and compared among
the case and control group. All the derived data were correctly entered into a software
called RevMan 5.3 and the statistical analysis was executed. The OR and CI were
also taken in order to investigate the statistical relationship of the ACE, IL-10, and
AGT genetic polymorphisms in the development of CAD. Any deviance in the
Hardy�Weinberg Equilibrium (HWE) was checked properly for all the selected stud-
ies. P-value ,.05 were taken as statistically significant with the disease. The OR was
analyzed by using a fixed-effect model. Revman version 5.3 was used for further plot-
ting the forest plots and the funnel plots needed for the study.

13.3 Results

13.3.1 Literature search

The literature search and data arrangement processes executed in the meta-analysis
were as per the PRISMA guidelines. There were four main steps, identification,
screening, eligibility, and inclusion conditions, which were carried out in order to
select the eligible studies for this particular meta-analysis study. Initially, 530 articles
were derived from various databases. Out of which only 460 articles were recovered
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after the removal of 70 articles due to the duplicate records. Subsequently, as soon as
the screening process was over, 298 articles were retrieved after the deletion of 162
articles based on the exclusion criteria like abstracts, review articles, articles not appli-
cable for CAD. A total of 156 articles were removed because of the absence of the
allelic and genotypic frequency distribution as well as due to the lack of statistical data.
Full-text articles were sorted out and evaluated based on the inclusion criteria. Lastly,
41 articles were retrieved after the removal of 101 articles. The full-text articles were
selected on the basis of the qualitative analysis used to evaluate the link between the
ACE, IL-10, and AGT genetic polymorphisms and its risk in the development of
CAD. Fig. 13.3 illustrates the selection process of the meta-analysis.

Broadly, the information of the genetic polymorphisms was retrieved from two
different populations such as Asian and Caucasian. On the whole, the studies were

Figure 13.3 Flowchart illustrating selection process of meta-analysis.
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evaluated for ethnicity and 18 studies were found to be Asian studies, whereas 23
studies came under the Caucasian population. The information extracted about the
three genetic polymorphisms is shown in Tables 13.1�13.3.

Table 13.1 Meta-analysis of ACE (rs4340) gene polymorphism and the risk of coronary artery

disease.

S. no. Reference Ethnicity Odds ratio 95% CI P-value

1 Acarturk et al. [45] Caucasian 1.48 1.01�2.18 ,0.05
2 Niemiec et al. [46] Caucasian 1.88 1.13�3.15 0.01
3 Freitas et al. [47] Caucasian 1.41 1.15�1.74 ,.0001
4 Jamil et al. [48] Asian 0.58 0.37�0.90 ,0.01
5 Ramakrishnan et al. [49] Asian 1.22 0.50�2.94 0.65
6 Poorgholi et al. [50] Asian 0.61 0.35�1.07 0.49
7 Firouzabadi et al. [31] Asian 1.49 0.96�2.28 0.06
8 Heidari et al. [51] Asian 1.07 0.66�1.75 0.80
9 Vladeanu et al. [27] Caucasian 5.25 2.02�13.5 0.006

Table 13.2 Meta-analysis of IL-10 (rs1800896) gene polymorphism and the risk of coronary artery

disease.

S. no. Reference Ethnicity Odds ratio 95% CI P-value

1 Koch et al. [37] Caucasian 0.97 0.76�1.24 0.84
2 Donger et al. [52] Caucasian 1.02 0.83�1.24 0.81
3 Lio et al. [53] Caucasian 2.15 1.31�3.53 0.002
4 O’Halloran et al. [54] Caucasian 0.86 0.66�1.12 0.27
5 Chen et al. [55] Asian 1.33 0.74�2.41 0.33
6 Lorenzova et al. [56] Caucasian 0.86 0.65�1.15 0.34
7 Ben-Hadj-Khalifa et al. [57] Caucasian 1.46 0.99�2.15 0.05
8 Fragoso et al. [38] Caucasian 0.99 0.77�1.28 0.99
9 Karaca et al. [58] Caucasian 0.97 0.49�1.92 0.94
10 Yu et al. [59] Asian 0.98 0.75�1.29 0.92
11 Babu et al. [60] Asian 1.24 0.99�1.55 0.05
12 Afzal et al. [61] Asian 1.59 0.43�5.83 0.47
13 Ianni et al. [62] Caucasian 1.04 0.72�1.50 0.80
14 Cruz et al. [63] Caucasian 0.73 0.50�1.06 0.10
15 Elsaid et al. [64] Caucasian 0.33 0.06�1.59 0.16
16 Qian et al. [65] Asian 1.03 0.81�1.33 0.76
17 Ren and She [66] Asian 2.21 1.32�3.43 0.001
18 Xu and Liu [67] Asian 2.31 1.29�4.19 0.003
19 Mousavi et al. [68] Asian 1.79 1.12�2.87 0.01
20 Menshed et al. [69] Asian 0.88 0.40�1.93 0.76
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13.3.2 Quantitative data analysis

A total of 15,666 CAD cases and 10,908 controls were retrieved from a total of 41
studies, which exhibited a link between ACE, IL-10, and AGT genetic polymorph-
isms and an increased risk of developing CAD in Caucasian and Asian populations.
The ACE (rs4340) polymorphism associated with risk of CAD comprised of 1889
CAD cases and 1710 controls which was retrieved from four Caucasian and five Asian
population evidence. The association test of ACE rs4340 genetic polymorphism was
assessed as pooled OR in allelic model OR 0.83; 95% CI 0.74�0.92, Recessive model
OR 0.90; 95% CI 0.76�1.06, Dominant model OR 0.69; 95% CI 0.58�0.82 and
Over dominant model OR 0.83; 95% CI 0.72�0.96. The association data of ACE
genetic polymorphism with risk of developing CAD condition in various genetic
models are shown in Figs. 13.4�13.7.

The forest plots exhibit the result of the estimated outcome by means of fixed-
effect model. The HWE values of ACE genetic polymorphism are shown in
Table 13.4.

The IL-10 genetic polymorphism rs1800896 comprising of nine Asian and 11
Caucasian studies exhibited a total of 8690 CAD cases and 6075 controls. The associa-
tion test of IL-10 rs1800896 genetic polymorphism was evaluated as pooled OR in
allelic model OR 1.03; 95% CI 0.97�1.08, Recessive model OR 1.01; 95% CI
0.93�1.10, Dominant model OR 1.07; 95% CI 0.97�1.18, and Over dominant
model OR 1.03; 95% CI 0.95�1.11. The association between IL-10 genetic poly-
morphism and progression into CAD shown in various genetic models is illustrated in
Figs. 13.8�13.11.

Table 13.3 Meta-analysis of AGT (rs699) gene polymorphism and the risk of coronary artery

disease.

S. no. Reference Ethnicity Odds ratio 95% CI P-value

1 Fatini et al. [70] Caucasian 1.69 0.40�7.20 0.47
2 Spiridonova et al. [71] Caucasian 9.07 0.46�17.8 0.14
3 Babunova et al. [72] Caucasian 2.75 0.33�22.6 0.34
4 Nair et al. [73] Asian 0.19 0.009�4.05 0.28
5 Zhang et al. [74] Asian 5.10 1.32�19.6 0.01
6 Renner et al. [75] Caucasian 0.08 0.04�0.14 ,0.0001
7 Tsai et al. [76] Asian 2.11 0.76�5.86 0.14
8 Frritas et al. [77] Caucasian 2.28 0.50�10.2 0.28
9 Abboud et al. [78] Caucasian 6.48 2.25�18.7 0.0005
10 Konopka et al. [79] Caucasian 4.75 0.54�41.4 0.15
11 Khatami et al. [80] Asian 0.52 0.22�1.24 0.14
12 Azova et al. [81] Caucasian 0.57 0.29�1.12 0.10
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The forest plots exhibit the result of the estimated outcome by means of fixed-
effect model. The HWE values of IL-10 genetic polymorphism are shown in
Table 13.5.

The AGT genetic polymorphism rs688 is comprised of 5087 CAD cases and 3123
controls. The association test of IL-10 rs1800896 genetic polymorphism was evaluated
as pooled OR in allelic model OR 1.19; 95% CI 1.08�1.32; Recessive model OR
1.27; 95% CI 0.92�1.74; Dominant model OR 1.20; 95% CI 1.20�1.34, Over dom-
inant OR 1.1; 95% CI 1.02�1.28. The association between AGT genetic polymor-
phism and progression into CAD shown in various genetic models are illustrated in
Figs. 13.12�13.15.

Figure 13.4 The link between ACE rs4340 genetic polymorphism and risk of CAD illustrated by

allelic contrast model.

Figure 13.5 The link between ACE rs4340 genetic polymorphism and risk of CAD illustrated by

recessive model.
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The forest plots exhibit the result of the estimated outcome by means of fixed-effect
model. The HWE values of AGT genetic polymorphism are shown in Table 13.6.

13.3.3 Publication bias

The Egger’s test was conducted to assess the possible publication bias amongst the
overall investigation. In order to carry out this method, a minimum of four studies

Figure 13.7 The link between ACE rs4340 genetic polymorphism and risk of CAD illustrated by

over-dominant model.

Figure 13.6 The link between ACE rs4340 genetic polymorphism and risk of CAD illustrated by

dominant model.
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were essential. The funnel plot displayed the effect size on the x-axis and the sample
size is plotted on the y-axis. This was further used to check the presence or absence of
probable publication bias where P-value ..05. In the present study, the Egger’s test
did not display any considerable publication bias by the ACE genetic polymorphism
(rs4340) specifically amongst the genetic models (P..05). The genetic models of

Table 13.4 HWE results of ACE (rs4340) polymorphism involved in coronary artery disease.

S. no. Reference Ethnicity Case\control HWE

II ID DD Total

1 Acarturk et al.
[45]

Caucasian 6/14 81/66 89/51 176/131 0.35

2 Niemiec et al.
[46]

Caucasian 20.3/30.2 46/48.5 33.7/21.3 100/100 0.8

3 Freitas et al. [47] Caucasian 38/84 137/282 123/144 298/510 0.01
4 Jamil et al. [48] Asian 45/61 31/23 24/16 100/100 0
5 Ramakrishnan

et al. [49]
Asian 14/12 26/19 16/25 56/56 0.07

6 Poorgholi et al.
[50]

Asian 317/162 262/158 97/54 676/374 0.19

7 Firouzabadi
et al. [31]

Asian 11/21 30/57 29/27 70/105 0.40

8 Heidari et al.
[51]

Asian 69/73 54/47 25/15 148/135 0.16

9 Vladeanu et al.
[27]

Caucasian 21/8 3/40 0/0 24/48 0

HWE, Hardy�Weinberg equilibrium; ACE, angiotensin-converting enzyme.

Figure 13.8 The link between IL-10 (rs1800896) genetic polymorphism and risk of CAD illustrated

by allelic contrast model.
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IL-10 genetic polymorphism (rs1800896) also have not displayed any significant differ-
ence in the results (P. 0.05). No publication bias was seen in the various genetic
models of the AGT genetic polymorphism (rs699) also. The funnel plots retrieved
for all the three genetic polymorphisms are displayed in Figs. 13.16�13.18.

Figure 13.9 The link between IL-10 (rs1800896) genetic polymorphism and risk of CAD illustrated

by recessive model.

Figure 13.10 The link between IL-10 (rs1800896) genetic polymorphism and risk of CAD illustrated

by dominant model.
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13.4 Discussion

The current meta-analysis study presents the association of ACE (rs4340), IL-10
(rs1800896), and AGT (rs699) genetic polymorphisms with an increased risk of devel-
oping CAD, especially amongst Caucasian and Asian populations. In order to carry
out the meta-analysis, a sum total of 15,666 CAD cases and 10,908 controls were
taken into account derived from various populations. The outcome of this study shows
statistically substantial link between the ACE, IL-10, and AGT genetic polymorphisms
and risk of developing CAD in an early stage.

Several genetic linked studies were performed in order to prove the impact of cer-
tain genetic polymorphisms in the progression of diseases. These genetic association
findings can be a boon for the early diagnosis of subjects who are more vulnerable to
certain ailments. One of the recently published articles by Arthiya et al. [43] has
proved the involvement of genetic polymorphisms of LDLR, MTHFR, and
KLOTHO and the risk of developing CAD [82]. Meta-analysis investigations are used
to compare the outcomes of the previously done studies with the new studies. It also
increases the statistical power of the information collected from various findings [83].
These studies are used to forecast the susceptibility of ailments by using genetic poly-
morphisms as a biomarker amongst different ethnicity and can predict the progression
of diseases by studying the genetic framework of various populations.

It is known that CAD can thereby increase the progression of other heart-related
ailments such as cardiovascular disease as well as a comprehensive block leading to a

Figure 13.11 The link between IL-10 (rs1800896) genetic polymorphism and risk of CAD illustrated

by over-dominant model.
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Table 13.5 HWE results of IL-10 (rs1800896) polymorphism involved in coronary artery disease.

S. no. Reference Ethnicity Case/control HWE

AA CA CC Total

1 Koch et al. [37] Caucasian 540/105 874/161 377/74 1791/340 0.52
2 Donger et al. [52] Caucasian 242/231 486/477 256/244 984/952 0.99
3 Lio et al. [53] Caucasian 60/30 52/75 30/48 142/153 0.10
4 O’Halloran et al. [54] Caucasian 323/90 784/160 491/136 1598/386 0.006
5 Chen et al. [55] Asian 39/35 6/8 5/17 50/60 0
6 Lorenzova et al. [56] Caucasian 90/207 98/255 40/106 228/568 0.17
7 Ben-Hadj-Khalifa et al. [57] Caucasian 76/52 108/100 101/76 285/228 0.18
8 Fragoso et al. [38] Caucasian 211/164 142/113 36/25 389/302 0.52
9 Karaca et al. [58] Caucasian 20/21 44/44 22/23 86/88 0.10
10 Yu et al. [59] Asian 150/275 22/38 1/0 173/313 0.42
11 Babu et al. [60] Asian 318/170 260/188 73/74 651/432 0.17
12 Afzal et al. [61] Asian 6/4 77/92 10/3 93/99 0
13 Ianni et al. [62] Caucasian 68/78 141/88 56/73 265/239 0
14 Cruz et al. [63] Caucasian 55/125 83/106 11/17 149/248 0.52
15 Elsaid et al. [64] Caucasian 2/8 49/85 22/5 73/98 0
16 Qian et al. [65] Asian 395/159 72/34 4/4 471/197 0.34
17 Ren and She [66] Asian 138/42.46 123/37.85 64/19.69 325/100 0.12
18 Xu and Liu [67] Asian 105/132 121/116 46/25 272/273 0.99
19 Mousavi et al. [68] Asian 95/130 149/168 59/45 303/343 0.52
20 Menshed et al. [69] Asian 38/17 37/19 65/59 140/95 0

HWE, Hardy�Weinberg equilibrium.



cardiac arrest or heart failure [84]. CAD is known to begin at an early phase and there
are evidence to support that this has a major link to genetic factors. Various former
studies have proposed that genetic aspects are more likely to be seen in younger gen-
eration rather than elderly people [85]. The current investigation has pointed out the

Figure 13.12 The link between AGT (rs699) genetic polymorphism and risk of CAD illustrated by

allelic contrast model.

Figure 13.13 The link between AGT (rs699) genetic polymorphism and risk of CAD illustrated by

recessive model.
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outcomes of the link between genetic polymorphisms of ACE, IL-10, and AGT in
the progression of CAD by using certain genetic models like allele contrast, recessive
model, over dominant model, and dominant model. This genetic association study has

Figure 13.14 The link between AGT (rs699) genetic polymorphism and risk of CAD illustrated by

dominant model.

Figure 13.15 The link between AGT (rs699) genetic polymorphism and risk of CAD illustrated by

over- dominant model.
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shown a significant association between ACE (rs4340), IL-10 (rs1800896), AGT
(rs699) genetic polymorphisms with an increased risk of developing CAD.

The studies on ACE genetic polymorphisms are known to be used as genetic bio-
markers for the early detection of certain heart-related ailments like MI, ischemic heart
disease, ischemic cerebrovascular disease, and coronary artery stenosis [85,86]. The
genetic link of the polymorphisms such as rs4343 and rs4340 with CAD has been
found to be beneficial by previous findings. The difference in the populations might
be due to some discrepancies in the environment as well as in the genetic framework.
The pathophysiological mechanism of CAD is atherosclerosis, and IL-10 is known
to present a crucial impact on the development and advancement of atherosclerotic
plaque [87]. In a previous study IL-10 (rs1800896) polymorphism was reported to
be linked with an increased risk of CAD and the same polymorphism was also found
to be linked with tobacco smoking and advancement of CAD [88]. Renin�
angiotensin system is reported to be one among other factors which regulate the
blood pressure and cardiovascular homeostasis. Angiotensin is a major component of

Table 13.6 HWE results of AGT (rs699) polymorphism involved in coronary artery disease.

S. no. Reference Ethnicity Case/control HWE

MM MT TT Total

1 Fatini et al.
[70]

Caucasian 5/3 61/46 139/160 205/209 0.93

2 Spiridonova
et al. [71]

Caucasian 3/0 36/19 55/103 94/122 0.57

3 Babunova
et al. [72]

Caucasian 7/1 57/21 165/68 229/90 0.87

4 Nair et al.
[73]

Asian 0/2 25/27 111/102 136/131 0.93

5 Zhang et al.
[74]

Asian 8/3 19/32 78/166 105/201 0.58

6 Renner et al.
[75]

Caucasian 14/49 174/610 545/1924 733/2583 0.94

7 Tsai et al.
[76]

Asian 15/5 195/111 525/403 735/519 0.57

8 Freitas et al.
[77]

Caucasian 4/3 59/107 235/400 298/510 0.50

9 Abboud et al.
[78]

Caucasian 28/4 39/44 274/268 341/316 0.49

10 Konopka
et al. [79]

Caucasian 5/1 41/27 54/67 100/95 0.57

11 Khatami
et al. [80]

Asian 86/98 53/4 9/3 148/105 0

12 Azova et al.
[81]

Caucasian 22/14 15/30 63/56 100/100 0.03

HWE, Hardy�Weinberg equilibrium, AGT, Angiotensinogen.
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Figure 13.16 Funnel plot illustrating dominant model of the ACE (rs4340) genetic polymorphism.

Figure 13.17 Funnel plot illustrating over- dominant model of the IL-10 (rs1800896) genetic

polymorphism.
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renin�angiotensin system [89]. Amongst the AGT genetic variants, rs699 have been
widely investigated. The CC homozygotes of rs699 polymorphism are found to have
10%�20% elevated AGT plasma levels which might be due to the linkage equilibrium
with the G-6A loci present in the gene’s promoter region [90].

To summarize, the present meta-analysis has specified the link between three different
genetic polymorphisms with the progression of CAD. It has showed that ACE (rs4340),
IL-10 (rs1800896), and AGT (rs699) have been studied to have elevated risk of CAD
more frequently in the Asian population when compared to the Caucasian population.
This piece of work might be useful to understand the importance of SNPs in the progres-
sion of ailments such as CAD in this case. This article has listed three main polymorphisms
which could be used as a genetic marker to detect CAD. Further studies with larger sam-
ple sizes in diverse populations are required to come to a consistent result.

13.5 Conclusion

SNPs are known to be a very frequently occurring genetic variation among human beings
because of its plethora presence throughout the human genome [91]. The SNPs are very
useful to map human diseases and can also be used as biomarkers, in the field of popula-
tion genetics as well as in evolutionarily related investigations. These genetic polymorph-
isms have been potentially significant ever since the usage of high-throughput techniques
such as DNA sequencing have become accessible and readily available [91,92]. The

Figure 13.18 Funnel plot illustrating dominant model of the AGT (rs699) genetic polymorphism.
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advancement and usage of these genetic biomarkers have a solitary substantial role in the
field of genetics which aid in the early diagnostics of diseases. It has a paramount signifi-
cance in personalized diagnostics and personalized medicine which differs from person to
person. SNPs are powerful and consistent biomarkers having indicative value and might
be also a guide to identify the ultimate disease causative factors. Genetic biomarkers are
able to associate the development of any devastation leading to clinical or preclinical pro-
blems. It can also qualify in better decision-making during drug discovery as well as in the
management of diseases among patients [93].

The current meta-analysis study has publicized enough information collected from
larger sample size studies mainly on the impact of the investigated genetic polymorph-
isms and its progression to CAD. Larger sample-sized patient-involved findings are
useful in order to validate these genetic biomarkers in the blood and serum samples.
Along with this, it is also important to study the other factors such as gene�gene
interaction, ethnicity, and environmental factors which alter the genetic framework
and predispose to CAD in an early phase.
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CHAPTER 14

Role of optical coherence tomography
in borderline coronary lesions

Jit Brahmbhatt, Roopesh Singhal and Zeeshan Mansuri
Department of Cardiology, SBKS Medical College & Research Center, Piparia, India

14.1 Introduction

Although coronary angiography is the mainstay imaging modality to assess the presence,
extent, and severity of CAD, and to guide PCI procedures, intravascular imaging has played
a fundamental role during PCI maturation and evolution. Visual estimation of the two-
dimensional silhouette of the contrast-filled luminogram may be insufficient for accurate
diagnosis of CAD severity and extension. By providing higher-resolution tomographic
images of the entire circumference of the vessel wall, intracoronary imaging may overcome
these limitations. In the mid-1990s Colombo et al. [1] demonstrated after intravascular
ultrasound (IVUS)-guided high-pressure balloon post dilatation, full expansion and com-
plete stent apposition were achieved in 96% of the patients. This strategy resulted in very
low rates of acute (0.6%) and subacute (0.3%) stent thrombosis, eliminating the need for
systemic anticoagulants, and consolidating the widespread use of coronary stents for the
percutaneous treatment of CAD in the years to come.

More recently introduced optical coherence tomography (OCT) uses near-infrared
light to generate cross- sectional images of the coronary arteries. Near-infrared light has
a shorter wavelength and higher frequency than ultrasound, thus providing images with
10-fold higher resolution than those provided by IVUS. The faster and safe acquisition
of longitudinal sequences of sharp and detailed images, along with ease of use and inter-
pretation, leverages OCT as an attractive imaging modality with the potential to guide
and optimize PCI, which ultimately may translate into improved clinical outcomes.

14.2 Physics of optical coherence tomography

The science behind OCT is analogous to pulse-echo ultrasound imaging, but light is used
rather than sound to create the image [2]. Although ultrasound produces images from
backscattered (reflected) sound “echoes,” OCT uses infrared light waves (approximately
1300 nm wavelength) that reflect off the internal microstructure within the biological
tissues. Time delay between emission and receipt of the light is used to generate spatial
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image information, the intensity of the received (reflected or backscattered) light is trans-
lated into a color scale. As the speed of light is much faster than that of sound, an interfer-
ometer is required to measure the backscattered light. The interferometer splits the light
source into two “arms,” a reference arm and a sample arm, which is directed into the tis-
sue. The light from both arms is recombined at a detector, which registers the so-called
interferogram, the sum of reference and sample arm fields. This interferogram is then pro-
cessed to result into an image.

Time-domain OCT—First-generation OCT used for intracoronary imaging
employed “time-domain” technology. Relatively slow data acquisition and the need
to clear the artery from blood during image acquisition resulted in a complex imaging
procedure, which limited its use.

Fourier-domain OCT—Since 2008, a new generation of OCT systems (also called
Fourier domain OCT systems) have been available for widespread clinical use. With
these systems, the interferogram is detected as a function of wavelength, either by using
a broadband source as in the time domain systems, and spectrally resolved detection, or
by incorporating a novel wavelength-swept laser source. This latter technique is also
called “swept-source OCT,” or optical frequency domain imaging [3,4]. From the signal
received in one wavelength sweep, the depth profile can be constructed by the Fourier
transform operation. Most signals can be thought of as a summation of sine waves with
different frequencies. The Fourier transform extracts those frequencies, and their relative
weights, from the signal. The source wavelength in Fourier-domain OCT can be swept
at a much higher rate than the position scan of the reference arm mirror in a time-
domain OCT system. This development has led to faster image acquisition speeds, with
greater penetration depth, without loss of vital detail or resolution, and represents a great
advancement on current conventional OCT systems. Coronary arteries can be imaged
with high OCT catheter pullback speeds within seconds, which allows for widespread
clinical use in a broad range of patients and lesions [5].

Since both the bandwidth of infrared light used and wave velocity are orders of
magnitude higher than in medical ultrasound, the resulting resolution is one order of
magnitude larger than that of IVUS: The axial resolution of OCT is about 15 µm; the
lateral resolution is approximately 25 µm. However, the imaging depth of approximately
1�1.5 mm within the coronary artery wall is less than that of IVUS.

14.3 Imaging technique

OCT imaging catheters contain an OCT imaging core at their distal tip (Fig. 14.1).
Similar to IVUS, the imaging core is oriented at a 90-degree angle to the length of
the catheter; and is rotated during imaging. As a result, OCT images are displayed sim-
ilar to IVUS as cross-sectional views of the coronary artery. Automated pullback of
the OCT imaging core allows the user to scan through the coronary artery.
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Intracoronary OCT is performed by introducing the small imaging catheter over a
guide wire distally into the coronary artery using standard guide catheters (6 F or larger).
A motorized pullback is performed to scan the coronary artery segment. The pullback
speed is typically 20 mm/s with a frame rate of 100 frames per second or higher. Since
blood scatters the OCT signal, it is temporarily cleared by an injection of radiograph
contrast medium during the duration of the OCT pullback (typical flush rate 3.0 mL/s).
A variety of solutions, warmed to 37�C have been used alternatively as flush medium,
including ringer’s lactate, viscous isoosmolar contrast media, and low-molecular-weight
dextrose. The time needed to image a 50 mm artery segment is typically 3 seconds with
a total volume of radiograph contrast of 10�12 mL, which is comparable to the amount
of radiograph contrast needed for a single angiographic run.

All epicardial coronary arteries and venous or arterial grafts that are accessible by a
guiding catheter are eligible for OCT imaging. OCT should not be performed in
patients with severely impaired left ventricular function or those presenting with
severe hemodynamic compromise, as the imaging procedure might induce brief ische-
mia. Furthermore, OCT should be used with caution in patients with single remaining
vessel, as any guide wire or catheter insertion carries a small risk of dissection or arterial
spasm, or those with markedly impaired renal function. In these clinical circumstances,
the gain in diagnostic accuracy must be balanced against potential adverse effects in
individual patients.

A technical drawback is that plaques located at the very ostium of the left or right
coronaries cannot be accurately addressed by OCT, as it is difficult to clear the artery
from blood during a nonselective guide catheter position, required for the visualization
of the ostium.

The principle safety considerations relate to the possible induction of ischemia due
to the need of blood displacement for image acquisition. Current OCT systems allow
for very fast data within a few seconds and therefore are unlikely to lead to significant
ischemia. In a report of 114 OCT acquisitions in 90 patients, the procedure was suc-
cessful in 89 [6]. No patients suffered contrast-induced nephropathy and no major
complications were recorded. One patient had a transient vessel spasm that was

Figure 14.1 Schema showing mechanical details of OCT catheter tip. OCT, Optical coherence tomography.
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resolved with intracoronary administration of nitrates. During frequency-domain
OCT images acquisition no ischemic electrocardiographic changes were occurred.
Ventricular ectopic beats were found only in three patients while other major arrhyth-
mias (ventricular tachycardia or fibrillation) were not observed.

14.4 Optical coherence tomography image

OCT creates cross-sectional images of the coronary artery wall, as a result, the normal
coronary artery wall appears as a circular structure with three concentric layers at
OCT images (Fig. 14.2). The innermost signal-rich layer reflects the internal elastic
membrane, the middle dark layer represents the media, and the outer, signal-rich layer
represents the external elastic lamina [7,8].

A normal three-layer appearance by OCT is not synonymous to three-layer appear-
ance by IVUS. While OCT (resolution approximately 15 µm) is able to visualize a nor-
mal, nondiseased coronary artery, the resolution of IVUS (approximately 120 µm) is not
able to visualize truly nondiseased vessels. Thus, OCT can confirm the absence of signif-
icant atherosclerosis or indicate the degree of subclinical atherosclerotic lesion formation.
Serial measurements can be performed to monitor the structural changes that occur in
the vessel wall over time.

Atherosclerotic plaques—OCT has the ability to characterize the structure and
extent of coronary artery disease in greater detail than IVUS or angioscopy (Fig. 14.3).
Compared to IVUS, OCT has a higher accuracy to detect early atherosclerosis,
necrotic core or lipid-rich tissues, thrombi, and allows for visualization of calcifications

Figure 14.2 OCT image showing vessel wall layers of a normal coronary artery. OCT, Optical coher-
ence tomography.
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without blooming artifact, which typically causes overestimation of the calcium extent
by IVUS [9,10].

When atherosclerotic lesions are present, OCT can provide details on the tissue
composition. The following classifications have been used and validated:
• Fibrous plaques are typically rich in collagen or muscle cells and have a homoge-

neous OCT signal. Calcifications within plaques are identified by the presence of
well-delineated, low backscattering, signal-poor heterogeneous regions (Fig. 14.4).

• Necrotic cores or lipid-rich tissues are less well-delineated than calcifications,
appearing as diffusely bordered, signal-poor regions with overlying signal-rich
bands, corresponding to fibrous caps. The superiority of OCT for lipid-rich plaque
detection has been confirmed in other studies comparing OCT, IVUS and IVUS-
derived techniques for plaque composition analysis. A specific type of plaque is
called thin-cap fibroatheroma (TCFA). Thin fibrous cap atheroma is considered
the most important morphologic substrate for a plaque at high risk of rupture and
causing acute coronary syndrome. OCT allows the diagnosis of thin fibrous cap
atheroma with a sensitivity of 90% and a specificity of 79% when compared to his-
topathology [11] and for accurate measurement of the fibrous cap thickness with
low variability [12,13]. Ongoing research suggests that the ability of OCT to mea-
sure changes in the fibrous cap thickness could be used to monitor the effect of
therapeutic agents aiming at plaque stabilization. Exploratory registries evaluating
the fibrous cap thickness in patients on statin therapy suggest a trend toward an
increased cap thickness [14] and lower incidence of plaque rupture under statin
therapy [15]. Such data, however, need to be confirmed by adequately powered,
prospective studies.

Figure 14.3 Intracoronary image comparison of IVUS and OCT. OCT, Optical coherence tomography;

IVUS, intravascular ultrasound.
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• Thrombi are identified as masses protruding into the vessel lumen discontinuous
from the surface of the vessel wall. Red thrombi (Fig. 14.5) consist mainly of red
blood cells; relevant OCT images are characterized as high-backscattering protrusions
with signal-free shadowing. White thrombi (Fig. 14.6) consist mainly of
platelets and white blood cells and are characterized by a signal-rich, low-
backscattering billowing projection protruding into the lumen [12]. OCT is highly
sensitive in diagnosing intracoronary thrombi, as the high contrast between the
lumen and the surrounding structures facilitates the diagnosis. This is in contrast to
IVUS where it is often difficult to differentiate thrombi from the blood-filled lumen.

• Neoatherosclerosis (Fig. 14.7): Less well-validated entities are local macrophage
accumulations and neovascularization. Macrophages can be seen by OCT as signal-
rich, distinct, or confluent punctate dots that exceed the intensity of background
speckle noise [16]. They may be seen at the boundary between the bottom of the
cap and the top of a necrotic core. Likewise, experts believe that the visualization

Figure 14.4 OCT images of calcified plaque, fibrous plague, and thin capped fibroatheroma,

respectively. OCT, Optical coherence tomography.
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Figure 14.5 OCT acquisition of red thrombus. OCT, Optical coherence tomography.

Figure 14.6 OCT acquisition of white thrombus. OCT, Optical coherence tomography.
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of vasa vasorum and neovascularization is possible; however, no substantial valida-
tion studies have been published. Neovascularization within the intima appears as
signal poor voids that are sharply delineated and usually contiguous and seen on
multiple frames [17].

14.5 Optical coherence tomography versus intravascular ultrasound

An attempt was made to understand the role of OCT in patients undergoing PCI in
the ILUMIEN III: OPTIMIZE PCI trial [18], which randomly assigned patients with
native coronary artery lesions to OCT guidance, IVUS guidance, or coronary
angiography-guided stent implantations. The primary efficacy endpoint was post-PCI
minimum stent area (measured by OCT at a masked independent core laboratory at
the completion of enrollment) in all patients and the primary safety endpoint was pro-
cedural major adverse procedural complications. The study demonstrated that post-
PCI minimum stent area by OCT guidance was noninferior to IVUS. Neither IVUS
nor OCT was superior to angiography-guided PCI. Major complications were 3% or
less in the three groups.

14.6 Optical coherence tomography in borderline lesions

14.6.1 ACS with unclear culprit

The optimal management of acute coronary syndromes usually relies on rapid treat-
ment of the culprit vessel. The culprit vessel is sometimes indicated by the localization
of the pathognomonic electrocardiographic changes or by the finding of a thrombotic,
hazy lesion by angiography. However, the identification of the culprit lesion can be

Figure 14.7 Classic visualization of lipid-rich neoatherosclerosis in a restenotic tissue.
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challenging in some individuals, especially when multivessel disease is present.
Similarly, in 15% of the patients undergoing primary PCI for ST elevation myocardial
infarction, angiography shows a patent infarct-related vessel with TIMI 3 flow [19].
OCT can provide accurate information on the superficial composition of the plaque,
can identify ruptured plaques, and most importantly can reveal thrombosed lesions,
and thus identify the culprit lesion (Fig. 14.8).

14.6.2 Functional significance of stenosis

The first step in the planning strategy starts with identifying the stenosis that will bene-
fit from revascularization. Having in mind the measurement differences between
IVUS and OCT, clinicians should refrain from applying IVUS-derived parameters to
define coronary stenosis severity to OCT studies.

Over the years, it became common practice to use anatomic parameters derived from
IVUS to estimate the functional significance of angiographically intermediate (40%�70%)
coronary stenoses. A variety of observational studies validated IVUS-derived parameters
against invasive and noninvasive tests for the assessment of lesion severity. However, low
sensitivities (66.3%�92%), specificities (56%�92%), and positive predictive values
(27%�67%), as well as poor accuracy (64%�72%) limit the clinical application of such
parameters for predicting the physiological significance of coronary stenoses.

Figure 14.8 OCT image depicting a ruptured vulnerable plaque. OCT, Optical coherence tomography.
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Due to more accurate and reproducible lumen quantification, it was expected that
OCT could provide better diagnostic efficiency in identifying hemodynamically severe
coronary stenoses. Following six studies have compared OCT-derived parameters with
fractional flow reserve (FFR) for intermediate lesion assessment [10,20�24].

N FFR

cutoff

MLA

cutoff

AUC Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

Accuracy

(%)

Gonzalo
et al. [10]

61 0.80 1.95 0.74 82 63 66 80 72

Shiono et al.
[23]

62 0.75 1.91 0.90 93.5 77.4 80.6 92.3 85.4

Reith et al.
[20]

62 0.80 1.59 0.81 75.8 79.3 80.6 74.2 77.4

Pawlowski
et al. [24]

71 0.80 2.05 0.91 75 90 70.6 92.6 87

Pyxaras et al.
[22]

55 0.80 2.88 0.78 73 71 N/A N/A 72

Reith et al.
[20]

142 (all lesions) 0.80 1.64 0.83 78.8 75.8 80.8 73.4 N/A

80 (diabetics) 0.80 1.59 0.84 76.6 78.8 83.7 70.3 N/A
62 (nondiabetics) 0.80 1.64 0.83 78.8 75.9 78.8 75.9 N/A

As expected, the MLA cutoff values that better predicted an FFR of ,0.80 were
significantly smaller than those traditionally used for IVUS, ranging from 1.59 to
2.88 mm2. Although OCT slightly improved sensitivity (75%�93.5%), specificity
(63%�90%), and positive predictive value (66%�80.6%) in comparison with previous
IVUS data, this intravascular imaging showed only moderate efficiency to determine
functionally significant lesions, with accuracy ranging from 72% to 87%. These data
reinforce the low specificities of intravascular anatomic metrics to predict functionally
significant stenosis, precluding the routine use of intravascular imaging tools as substitutes
for functional evaluation for decision making of intermediate angiographic stenoses.

14.6.3 Vulnerable plaque

OCT also allows precise identification and quantification of high-risk features associated
with plaque instability and vulnerability, such as the presence of lipid and its longitudinal
and circumferential distribution, the quantification of fibrous cap thickness (an important
predictor of plaque rupture) [12,13], and macrophage infiltration (a marker of intrapla-
que inflammation) [16,25] (Fig. 14.9). OCT studies have shown that patients presenting
with ST-elevation myocardial infarction (STEMI) had significantly thinner fibrous caps
protecting the lipid or necrotic core than patients presenting with non- ST-elevation
myocardial infarction (NSTEMI) or stable angina [26,27]. Fibrous cap thickness was
thinner in patients presenting with resting angina in comparison with those presenting
with exercise-induced angina [14]. TCFA, plaque rupture, and red thrombus are more
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frequent in STEMI patients than in NSTEMI and stable CAD patients [27]. ACS
patients presenting with preserved protective fibrous caps were shown to have better
prognoses than those presenting with plaque rupture [36]. When plaque rupture is pres-
ent, it has been shown that a “proXimal-type” rupture of the fibrous cap is more often

Figure 14.9 Image comparison of IVUS, radiofrequency IVUS, and OCT in various lesion-like TCFA,

calcific lesion, necrotic core, lipid-rich plaque. OCT, Optical coherence tomography; IVUS, intravascular
ultrasound; TCFA, thin-cap fibroatheroma.
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seen in STEMI patients, while “distal-type” apertures are more frequent in patients with
NSTEMI [27]. Detailed qualitative and morphometric assessments of atherosclerotic pla-
ques, in combination with quantitative measures, provide important pathophysiological
and prognostic information that may be of value during the clinical decision-making
process and may assist physicians in individualizing management. TCFA, as determined
by OCT, has been identified as a predictor for periprocedural complications. In a study
by Tanaka et al. [14], the presence of lipid-rich plaques with an overlying fibrous cap
thickness of # 65 µm was identified as an independent predictor of no reflow after suc-
cessful stenting in patients with NSTE ACS. The frequency of no reflow increased sig-
nificantly, and the final thrombolysis in myocardial infarction myocardial blush grade
deteriorated according to the amplitude of the lipid arc in the culprit plaque [28]. In a
study of 115 ACS patients successfully treated with stenting, culprit lesions were classi-
fied into three groups according to the pre-PCI findings: (1) ruptured plaque (n5 59),
(2) nonruptured TCFA (n5 21), and (3) nonruptured, non-TCFA (n5 35).
Nonruptured TCFAs (43%) were significantly more often associated with microvascular
obstruction as determined by cardiac contrast-enhanced magnetic resonance imaging
than ruptured plaques (27%) and nonruptured, non-TCFA plaques (9%). Interestingly,
the prevalence of microvascular obstruction increased as the fibrous cap thickness
decreased [29]. Following the same pathophysiological principles, TCFA was also identi-
fied as an independent predictor for type IVa (periprocedural) MI [30,31]. Lastly, the
presence of TCFA at the stent landing zone is responsible for a sixfold increase in the
risk of having a stent edge dissection [32].

14.6.4 MI with no obstructive coronary atherosclerosis

MI with no obstructive coronary atherosclerosis (MINOCA) is a distinct clinical syn-
drome characterized by evidence of MI with normal or near-normal coronary arteries
on angiography (stenosis severity # 50%) in the absence of obvious noncoronary
causes of MI like a severe hemorrhage or severe respiratory failure [33]. Aside from
coronary angiography and assessment of LV wall motion, the following tests may be
useful for elucidating the cause of MINOCA: OCT or IVUS; acetylcholine (Ach) or
ergonovine challenge; cardiac magnetic resonance imaging with contrast material
(CMR/CM); endomyocardial biopsy; contrast-enhanced echocardiography and transe-
sophageal echocardiography; and testing for markers of thrombophilia (e.g., protein C
and S deficiency, as well as enhanced Factor VII activity). The sequence in which
these tests are performed depends on the likelihood of the cause based on the history
and evaluation of LV wall motion (Fig. 14.10).

If coronary angiography is abnormal but reveals less than 50% luminal obstruction
and/or nonocclusive thrombus, we often perform IVUS or OCT to identify subcriti-
cal plaque fissure or erosion and thrombus or spontaneous coronary artery dissection
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(SCAD). These studies are performed before the patient is discharged from the cathe-
terization laboratory.

14.6.5 Spontaneous coronary artery dissection

SCAD is a nontraumatic and noniatrogenic separation of the coronary arterial wall and
is an infrequent cause of acute myocardial infarction. It is more common in younger
patients and in women. Criteria for the angiographic definition include the presence
of a noniatrogenic dissection plane in the absence of coronary atherosclerosis, with
typical changes of radiolucent intimal flap and contrast staining [34,35]. However, a
contemporary angiographic series has shown that such stereotypical changes were seen
in only ,30% of nonatherosclerotic SCAD cases. The majority of SCAD had long
and diffuse narrowing on angiography due to intramural hematoma, and this appear-
ance was frequently unrecognized on angiography leading to under-diagnosis of this
condition. Imaging with OCT or IVUS may be helpful (Fig. 14.11). With these imag-
ing modalities, SCAD diagnosis is made with the presence of intramural hematoma
and/or a double lumen. Alternatively, repeat coronary angiography may be pursued
4�6 weeks later to evaluate for spontaneous angiographic healing of the dissected seg-
ment, if the diagnosis is uncertain.

Figure 14.10 Relevance of OCT in strategy making of borderline coronary lesions. OCT, Optical
coherence tomography.
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14.6.6 Transplant vasculopathy

Although coronary angiography is the clinical gold standard for the diagnosis of non-
transplant coronary artery disease, it is less sensitive in detecting transplant vasculopa-
thy, as acknowledged in the ISHLT consensus document [36�39]. The lower
sensitivity of angiography for CAV is due to the often diffuse, longitudinal, and con-
centric nature of the disease, as opposed to the focal and eccentric pattern of nontrans-
plant atherosclerosis. IVUS is suggested when angiographic findings seem insufficient
to explain left ventricular dysfunction. IVUS is used mainly in two settings: Some cen-
ters perform an IVUS exam early after transplantation (typically at the 1-year mark)
and risk-stratify patients based on the findings. Other centers perform IVUS both a
few weeks after transplantation and after 1 year, thus enabling discrimination between
donor-transmitted disease and true transplant vasculopathy.

IVUS is performed in patients with graft failure when endomyocardial biopsy
lacks clear signs of rejection and conventional angiography does not show evidence
of CAV. In these cases, demonstration of significant intimal thickening on IVUS is
required to confirm a diagnosis of CAV.

Clear consensus on the diagnostic criteria for CAV using IVUS has not been
reached. However, most apply the criterion used in clinical trials, which is an increase

Figure 14.11 Classical OCT image of SCAD. OCT, Optical coherence tomography; SCAD, spontane-
ous coronary artery dissection.
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in maximal intimal thickness $ 0.5 mm in the left ascending anterior branch from the
time of transplantation to one year after transplantation. OCT (Fig. 14.12) is not yet
used for clinical decision making but is predicted to replace or supplement IVUS in
some patients, especially if differentiation between donor-transmitted disease and trans-
plant vasculopathy is important [40]. A greater understanding of CAV has emerged
from studies using OCT angiography, allowing for high-resolution evaluation of the
coronary artery wall structure and composition. It appears to be particularly well suited
to detect very early CAV and evaluate plaque stability in these patients. More research
is needed before a definite role for OCT in cardiac transplantation can be defined.

14.6.7 Clinical evidence of optical coherence tomography

The clear, detailed, and accurate information provided by OCT is easier to inter-
pret, with a shorter learning curve than other intravascular imaging modalities.
As a consequence, an elevated rate of interaction of operators in response to the
data provided by the OCT has been reported.

In the prospective series by Stefano et al. [41], 100 OCT was used pre-PCI, post-
PCI, or both pre- and post-PCI in 150 consecutive patients enrolled during a 2-month

Figure 14.12 OCT images in transplant vasculopathy. OCT, Optical coherence tomography.
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period aiming to assess the safety, success, and impact of FD-OCT on patient manage-
ment in the cardiac catheterization laboratory. Notably, operators changed the initial
angiographic-based strategy in 81.8% of the cases after performing pre-PCI OCT. The
most frequent changes were in the predicted stent length (48.5%) and diameter (27.3%).
Most of the changes in stent length (30.3%) were for longer stent lengths, as is frequently
the case with any invasive imaging modality, which allows visualization of more diseased
segments than angiography. Of note, it is important to observe that pre-PCI OCT short-
ened the predicted stent length in 18.2% of the cases. When OCT was used post stent-
ing, further interventions were performed in an additional 54.8% of the treated target
vessels. Post stenting, mal-apposition was detected in 39.2% of the cases (89.4% of which
underwent further balloon dilatation), and stent edge dissection in 32.5% (21.1% treated
with additional stents).

In the largest and more recent ILUMIEN II study [42,43], OCT and documentary
FFR were performed pre- and post-PCI in 418 patients. Based on pre-PCI OCT, the
initial strategy was altered in 55% of patients (57% of all stenoses). Once again, longer
stents were selected (43%), but a nonnegligible proportion of lesions had their pre-
dicted stent lengths shortened (25%). After clinically successful stent implantation,
post-PCI OCT and FFR were repeated. Suboptimal results as per the operator’s inter-
pretation of OCT findings were frequent (14.5% mal-apposition, 7.6% under-
expansion, and 2.7% edge dissection) and prompted further optimization in 25% of
patients (27% of all stenoses), by either additional balloon dilatation (81%) or place-
ment of additional stents (12%). Interestingly, the final FFR (B0.89) was not signifi-
cantly different with respect to the timing of OCT use to plan or optimize the PCI.
Of note, in the subset of cases with paired final FFR and OCT measurements follow-
ing optimization, FFR values improved from 0.866 0.07 to 0.906 0.10 following
correction of OCT findings that were deemed unsatisfactory by the operator [42].

These reports reaffirm the importance of pre-PCI imaging for strategy planning, as
demonstrated by the elevated change and refinement of the initially predicted strategy.
Post-PCI OCT also offered additional opportunities for optimization of the PCI
results. However, other than correcting small minimal in-stent lumen areas and regions
of under-expansion (strong predictors of late stent failure), exaggerated stent mal-
apposition, and extensive and deep edge dissections with lumen compromise, overre-
action to other smaller abnormalities (although frequently detected by post-PCI OCT)
may not be of clinical relevance.

Currently, there is a paucity of data on OCT predictors of stent failure, as well as
prospectively validated protocols for stent sizing and optimization.

In the CLI-OPCI observational study, Prati et al. [44] compared the clinical out-
comes of PCI guided by angiography alone with those of PCI guided by angiography
plus OCT in a matched population of 670 patients (335 for each group). A pragmatic
protocol was used at the involved centers to make practices uniform and enforce
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similar criteria for intervention when OCT use was considered to guide PCI.
No quantitative criteria were proposed for stent sizing or positioning, which were left
to the operator’s discretion. The protocol recommended the following actions to spe-
cific OCT disclosed issues: (1) edge dissection (linear rim of tissue with a width of
$ 200 µm and a clear separation from the vessel wall) and reference lumen narrowing
(lumen area of ,4.0 mm2) required implantation of an additional stent; (2) stent
under-expansion (MLA of # 90% of the average reference lumen area or $ 100% of
the lumen area of the smallest reference) required further dilatation with a noncompli-
ant balloon the same diameter of the stent inflated $ 18 atm, or with a semicompliant
balloon $ 0.25 mm larger than the stent inflated at $ 14 atm; (3) stent mal-
apposition (strut-to-lumen distance of .200 µm) required further dilatation with a
noncompliant or semicompliant balloon with a diameter $ 0.25 larger than that of
the previously used balloon, at $ 14 atm; (4) thrombus required further dilatation
with a noncompliant or semicompliant balloon of the same diameter as the stent at
8�16 atm for 60 seconds. Features disclosed by OCT, and not detected by angiogra-
phy, represented edge dissections in 14.2%, lumen narrowing in 2.8%, stent mal-
apposition in 29.7%, stent under-expansion in 11.4%, and intracoronary thrombus in
22.0%. These findings led to additional interventions in 34% of the cases (additional
stents in 12.6% and additional balloon dilatations in 22.1%). At the end of 1 year,
patients submitted to PCI with angiography plus OCT guidance experienced signifi-
cantly lower rates of cardiac death (1.2% vs 4.5%, P5 .01), cardiac death or MI (6.6%
vs 13%, P5 .006), and the composite of cardiac death, MI, and repeat revasculariza-
tion (9.6% vs 14.8%, p5 .044). These favorable clinical outcomes persisted after exten-
sive multivariable regression analysis (OR 0.49, 95% CI 0.25�0.96, P5 .037),
propensity score-adjusted analysis with bootstrap resampling (OR 0.37, 95% CI
0.10�0.90, P5 .050), and CoX proportional hazards analysis (hazard ratio 0.51, 95%
CI 0.28�0.93, P5 .028).

The currently ongoing DOCTORS study [45] is a prospective, randomized, multi-
center, open-label clinical trial that evaluates the utility of OCT to optimize results of
angioplasty of a lesion responsible for a non-ST-elevation ACS. Patients (n5 250) are
randomized to OCT-guided PCI or angiography-guided PCI. A protocol for stent
sizing and deployment is not enforced, but guidelines for procedural optimization are
applied as follows: (1) additional balloon inflations should be performed in the case of
stent under-expansion, defined as a minimal stent area of # 80% of the reference
lumen area; (2) additional stent implantation should be performed to rectify incom-
plete lesion coverage (including edge dissection); (3) use of glycoprotein IIb/IIIa inhi-
bitors and/or thrombus aspiration should be systematically considered in the case of
thrombus presence; and (4) rotational atherectomy should be considered in the case of
circumferential calcification. The primary endpoint is the functional result of PCI as
assessed by FFR measured at the end of the procedure.
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14.7 Conclusion

OCT is an imaging tool that provides real-time intravascular data in high resolution. It
gives intricate details of superficial intracoronary structures including type and nature
of plaques and position of stents. In patients with borderline coronary lesions, OCT
helps delineating treatment strategies where angiographic dilemma of whether to stent
the lesion or not exists. With rapidly evolving technology and advent of three-
dimensional imaging, OCT has a potential of regular and guideline-directed usage in
coronary interventions. Especially while dealing with complex lesions, stent thrombo-
sis, and borderline coronary lesions.
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